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ABSTRACT

A workshop on the Mars Global Network Mission held at the Jet

Propulsion Laboratory (JPL) on February 6 and 7, 1990, was attended by 68

people from JPL, National Aeronautics and Space Administration centers,
universities, national laboratories, and industry. Three working sessions

on science and exploration objectives, mission and system design

concepts, and subsystem technology readiness each addressed three
specific questions on implementation concepts for the mission. The

workshop generated conclusions for each of the nine questions and also

recommended several important science and engineering issues to be

studied subsequent to the workshop.





CONTENTS

INTRODUCTION ..................................................................................................... 1

1.1 BACKGROUND ................................................................................................ 1

1.2 ORGANIZATION OFTHE PROCEEDINGS ................................................ 1

2 SUMMARY

2.1

OF CONCLUSIONS ........................................................................ 1 1

SESSION A: SCIENCE AND EXPLORATION .......................................... 1 1

SESSION B: MISSION AND SYSTEM DESIGN ...................................... 1 3

SESSION C: SUBSYSTEM TECHNOLOGY ............................................... 1 4

3 DETAILED

3.1

3.2

3.3

3.4

3.5

3.6

PROCEEDINGS ............................................................................... 1 7

PLENARY SESSION 1 .................................................................................. 1 7

SESSION A: SCIENCE AND EXPLORATION .......................................... 1 8

SESSION B: MISSION AND SYSTEM DESIGN ...................................... 2 1

SESSION C: SUBSYSTEM TECHNOLOGY ............................................... 2 8

PLENARY SESSION 2 .................................................................................. 2 9

INFORMAL SESSION .................................................................................... 3 0

4 REFERENCES .......................................................................................................... 7 5

5 LIST OF ATTENDEES ......................................................................................... 7 7

V

PRECEDING PAGE BLANK NOT FILMED



CONTENTS (continued)

6 APPENDIXES .......................................................................................................... 87

6.1 SESSION A SUBMITTALS .......................................................................... 89

6.2

(1) Daniel J. McCleese, Jet Propulsion Laboratory ................ 91

(2) Francis M. Sturms, Jet Propulsion Laboratory ................. 95

(3) David Morrison, Ames Research Center ............................... 99

(4) Michael H. Carr, U.S. Geological Survey ............................... 103
(5) Bruce Murray, California Institute of Technology;

James D. Burke, Jet Propulsion Laboratory ....................... 107

(6) David Morrison, Ames Research Center ............................... 115

(7) Steven W. SquYres, Cornell University .... .,,. .... 117
(8) William B. Banerdt, Jet Propusiion Laboratory ................ 121
(9) Janet Luhmann, Oniversity of California

at Los Angeles ................................................................................ 127

(10) Paul Davis, University of California at Los Angeles ..... 159

SESSION B SUBMITTALS .......................................................................... 1 75

(1) Philip C. Knocke, Jet Propulsion Laboratory ..................... 177

(2) Arden Albee, California Institute of Technology;
Jim Burke and Robert Mostert, Jet Propulsion

Laboratory ........................................................................................ 191

(3) Alan L. Friedlander, Science Applications

International Corporation .......................................................... 205

(4) Alan L. Friedlander, Science Applications
International Corporation .......................................................... 223

(5) Alan L. Friedlander, Science Applications
International Corporation .......................................................... 229

(6) Manuel I. Cruz, TRW ...................................................................... 245

(7) Richard P. Reinert, Ball Space Systems Division ............ 261

(8) Joe D. Gamble, Johnson Space Center ................................... 275

(9) Byron L. Swenson, Science Applications

International Corporation .......................................................... 293

(10) Arden Albee, California Institute of Technology ............ 303

(11) Lester L. Sackett, The Charles Stark Draper

Laboratory ........................................................................................ 315

(12) Bruce A. Crandall, Hughes Aircraft Company .................... 331

(13) Carlos S. Moreno, Jet Propulsion Laboratory .................... 337

_'_-%-_i!_. , :

vi



CONTENTS (continued)

6.3

(14) John Garvey, McDonnell Douglas ............................................. 345

(15) Stephen Bailey, Johnson Space Center ................................. 349

SESSION C SUBMITTALS .......................................................................... 367

(1) C. Wayne Young, Sandia National Laboratories ................. 369

(2) David E. Ryerson, Sandia National Laboratories .............. 379

(3) Tomas A. Komarek, Jet Propulsion Laboratory ................. 389

(4) Farley Palmer, Hughes Aircraft Company ........................... 393

(5) Michael Shirbacheh, Jet Propulsion Laboratory ............... 403

(6) Alfred Schock, Fairchild Space Company ............................ 425

Exhibits

1.

2.

Invitation and Attachments .................................................................. 3

Key Topics ..................................................................................................... 7

Figures

o

2.

3.
4.

5.

6.

7.

8.

9.

10.
11.

12.

13.

14.
15.

16.

17.

Phase I: Global Assessment ................................................................. 32

Phase i1: Site Evaluation ....................................................................... 33

Global Network Mission .......................................................................... 34

Science Objectives: Atmospheric Science .................................... 35

Science Objectives: Internal Structure ......................................... 36

Science Objectives: Geochemistry and Mineralogy ................... 37

Science Objectives: Volatiles ............................................................ 39

Science Objectives: Surface Morphology ....................................... 40

Science Objectives: Regolith Structure ......................................... 41
Additional Science .................................................................................... 42

Two Vehicle Types .................................................................................... 43
Mars Precursor Mission Requirements ............................................. 44

Mars Engineering and Design Precursor Mission
Requirements .............................................................................................. 45

Precursor Requirement-- Conclusion ............................................. 46

Some MASE Objectives for GNM .......................................................... 47

Session A: Science and Exploration ................................................. 48
Science Objectives ................................................................................. 49

vii



CONTENTS (continued)

18.

19.
20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Mission Design Options ........................................................................... 51

Pros and Cons of the Options ............................................................... 52
Issues and Action Items: Science ..................................................... 53

Issues and Action Items: Engineering ............................................. 54
Session B: Mission and System Design ........................................... 55

Assigned Questions .................................................................................. 5 6

Alternate Concepts Using System-Design Tree ........................... 59
System-Design Tree... .............................................................................. 6 0
Mission Re_mmenc_ationsll ......... , ..................................... ' ................... 6 2

SyStem Design _c-o-mmenda.tio-ns ........ i_......,..,.: ....... :.i .................... 6 3

Session C: Summary Report: Subsystem Technology ............... 64
Question 1 ..................................................................................................... 6 5
Question 2 ..................................................................................................... 6 6

Question 3 ..................................................................................................... 6 7

Summary of Conclusions and Recommendations ......................... 68

GNM Workshop Conclusions: Mission Objectives ........................ 69

GNM Workshop Conclusions: Payload Types .................................. 70
GNM Workshop Conclusions" Strawman Payload
for FY90 Studies ........................................................................................ 71

GNM Workshop Conclusions" Orbit Design and

Landing Accuracy ........................................................................... 7 2

GNM Workshop Conclusions: Lander Design ................................... 73

GNM Workshop Conclusions: Subsystem Technology ................. 74

viii



SECTION 1

INTRODUCTION

1.1 BACKGROUND

These proceedings document a workshop on the Mars Global

Network Mission (GNM) held at the Jet Propulsion Laboratory (JPL) on

February 6 and 7, 1990.

Mars network missions have been under study for more than a

decade. Recently, the GNM has been included in the robotic mission set

defined in the National Aeronautics and Space Administration's (NASA's)

90-day study in support of the new Science Exploration Initiative to

return humans to the Moon and Mars (Reference 1). As part of the 90-day

study, JPL studied the robotic mission set, including a 1998-launched

network mission based on penetrator-type landers. The JPL study is

documented in Reference 2. The JPL Global Network Mission study team

further detailed the penetrator mission in a data package (Reference 3).

Because of the range of possibilities for implementing this

type of mission, and because of the new context of the mission as part of

the Science Exploration Initiative, a workshop was scheduled to collect

ideas about implementation concepts from the science and industrial
communities.

1.2 ORGANIZATION OF THE PROCEEDINGS

This introductory section contains background information on
the subject workshop. Exhibit 1 is a copy of the workshop invitation

letter with attachments stating the purpose and strategy for the

workshop. Exhibit 2 is a copy of key material handed out at the beginning

of the workshop. This material shows the workshop agenda and the
specific issues to be addressed. A copy of Reference 3 was included with
the non-JPL invitations.

Section 2 contains an executive summary of the workshop
conclusions.



The details of the proceedings are contained in Section 3. Each
of the two plenary sessions, the parallel discussion sessions, and the
concluding informal session are summarized here. References are made in
the parallel session summaries to materials presented or submitted at the
workshop. These submittals are contained in the appendixes. Several
papers were submitted after the workshop for inclusion in the
proceedings. These are also contained in the appendixes.

The proceedings conclude with a list of references and a list
of workshop attendees.
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Jet Propulsion Laboralory

C_)hrorn,;7 ir/sl!tute O! T_'.Chi_o:orjy

4800 Oa# Gro,,e Dnve

R%adena Ca!/orn_a 91109

(8!8) 3544321

JPL

January 9, 1990

^FI ^

^F2 ^

^F3 ^

^F4 ^

^F5 ^

Dear Colleague:

You are invited to participate in a workshop on the subject of a

Mars Global Network Mission to be held at JPL on February 6 and

7, 1990. This mission has been proposed for a 1998 launch as

part of the robotic exploration mission set leading to human
exploration of the Moon and Mars.

The workshop has two major objectives: i) to review and reconfirm

the candidate science and exploration mission objectives; 2) to
identify implementation options and tradeoffs to meet those

objectives. The workshop will help mission planners collect

ideas, especially from outside JPL, about applicable unclassified

engineering technology and implementation concepts to meet the

current science and human exploration initiative objectives for
the Mars Global Network Mission.

A copy of the agenda is attached, as well as a list of the

specific questions to be addressed at the workshop. All

participants are encouraged to select at least one of the session

questions of particular interest and to prepare a short brief

addressing the issue for discussion at the appropriate session.

Bibliography material would also be very useful. These

submittals will be published as part of the workshop proceedings.

Also included for your information is a copy of a point design

based on an all-penetrator mission that was generated at JPL

during the recent Human Exploration Initiative 90-day Study.

A social time is planned for the evening following the first

workshop day. Details will be announced at the workshop.

Please respond concerning your attendance at the workshop by
Thursday, February i. Call or write the JPL Global Network

Mission study leader, Fran Sturms, at (818) 354-5514, Mail Stop
171-267. Mr. Sturms can also be reached at FTS 792-5514 or
through NASAMAIL box FSTURMS.

Exhibit 1. Invitation and Attachments
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Jet Propulsion Laboratory

California Institute of Technology

Colleague - 2 - January 9,1990

We at JPL look forward to your participation and hope it will be

mutually beneficial as we prepare for this interesting mission.

S_rely#_

J_hn R. Casani

_'_o,.._:e_an__t_;roLe_ec_or

Attachments

Exhibit 1 (contd)
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Mars Global Network Mission Workshop

Dates: Tuesday and Wednesday, 6-7 February 1990

Place: Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena, CA 91109

Purpose:

To collect ideas, especially from outside JPL, about applicable

unclassified engineering technology and implementation concepts to meet
the current science and human exploration initiative objectives for a Mars

Global Network Mission (GNM).

Agenda:

Day 1 Building 167 Conference Room

O9OO

0915

0930

1000

1030

1045

1215

0115

0500

Plenary Session

Welcome and Opening Remarks

Workshop Plan

Overview of Science Objectives

Human Exploration Objectives
Break

Parallel Sessions

A - Science and Exploration

B- Mission and System Design

C - Subsystem Technology

(rooms to be announced at plenary session)
Lunch

Sessions A,B,C in parallel

Adjourn

Casani

Sturms

Squyres
Bell

Day 2

O9OO

0930

1000

1030

1045

1230

0130

Building 167 Conference Room

Plenary Session

Summary Report, Session A - Science and Exploration

Summary Report, Session B - Mission and System Design

Summary Report, Session C - Subsystem Technology
Break

Formulation of Workshop Conclusions

Adjourn formal workshop

Informal Post-workshop discussions

Exhibit 1 (contd)
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Workshop Strategy:

The primary emphasis of the workshop is on engineering, but with heavy

science participation. A review of the science objectives for GNM that

were developed at the December meeting of the Mars Science Working

Group (MarsSWG) will be presented in the opening plenary session along

with the objectives of the Human Exploration Initiative. The heart of the

workshop consists of three parallel sessions which will each specifically

address three questions concerning implementation of the GNM mission:

Session A - Science and Exploration

1) In view of the stated science and human exploration objectives, what

are realistic for GNM and what should be allocated to subsequent

missions?

2) Should there be only one type surface station (e.g. penetrators) or a mix

of lander types? Also-how many? where? what lifetime?
3) What instruments should be included in the lander and orbiter payloads?

Session B - Mission and System Design

1) How do we get to polar sites and is a common lander design feasible for

both low latitude and polar sites; both surface and subsurface science?

2) What is the best entry system - fixed or deployed aeroshells;

parachutes or direct impact?

3) What are the desired and achievable accuracies for targeting the

landing sites?

Session C - Subsystem Technology

1) What technology will help achieve 10-year lifetimes?

2) What technology will help survival of high-g landings?

3) Are RTGs a workable power subsystem (size, location on the lander)?

A member of the MarsSWG GNM sub-group will attend each parallel
session. Each session will have a moderator to maintain the focus on the

questions. A session recorder will capture inputs. Participants are

encouraged to prepare a short written brief and bibliography material

addressing one or more of the session questions to be included in the

published proceedings. Position papers will be presented to Start off

discussion on each question. A workshop consensus will be documented,

as well as outstanding issues for further study.

Exhibit 1 (c0ntd)
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Session A - Science and Exploration

Room assignment: 264-461B
Moderator: Dan McCleese

Recorder: Matt Golombek

Questions:

1) In view of the stated science and human exploration objectives, what
are realistic for GNM and what should be allocated to subsequent

missions?

2) Should there be only one type surface station (e.g. penetrators) or a mix

of lander types? Also-how many? where? what lifetime?

Position Statement for questions 1 and 2: Fran Sturms

3) What instruments should be included in the lander and orbiter payloads?

Position Statement: Bruce Banerdt

List of attendees:

Bruce Bachofer- GE

Bruce Banerdt- JPL

Don Bickler- JPL

Mike Carr- USGS

Paul Davis - UCLA

Tom Economou - U Chicago
Matt Golombek - JPL

Robert Haberle - ARC

Ron Kahl - JSC

Tony Knight- MMC

Jack Kropp- TRW

Peter Landecker - Hughes
Janet Luhmann - UCLA

Mike Malin - Arizona State

Dan McCleese - JPL

Chris McKay- ARC
David Morrison - ARC

Bruce Murray- Caltech
Dave Smith - JPL

Fran Sturms- JPL

Tomas Svitek - Caltech

Dick Wallace - JPL

Rich Zurek- JPL

Exhibit 2. Key Topics
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Session B - Mission and System Design

Room assignment: 167
Moderator: Tom Penn

Recorder: Robert Mostert

Questions:

1) How do we get to polar sites and is a common lander design feasible for

both low latitude and polar sites; both surface and subsurface science?

Position statements: Phil Knocke, Jim Burke

2) What is the best entry system - fixed or deployed aeroshells;

parachutes or direct impact?

Position statement: Joe Gamble

3) What are the desired and achievable accuracies for targeting the

landing sites?

Position statement: Les Sackett

List of attendees:

Arden Albee - Caltech

Norman Alexander - GE

Steven Bailey - JSC
Ed Belbruno - JPL

Dave Bell - JPL

Jim Burke- JPL

Louis Cassel - TRW

Bruce Crandall- Hughes
Manuel Cruz - TRW

Glenn Cunningham - JPL
Alan Friedlander- SAIC

Terry Gamber - MMC

Joe Gamble- JSC

Phil Knocke - JPL

Eric Laurson - Lockheed

Allan Lee- JPL

Bob Mitchell - JPL

Bob Miyake - JPL

Carlos Moreno - JPL

Robert Mostert - JPL

Tom Penn - JPL

Richard Reinert- Ball

Les Sackett - CSDL

Joel Sperans - ARC

Byron Swenson - SAIC

Dan Young - McDAC

Exhibit 2 (contd)
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Session C - Subsystem Technology

Room assignment: 238-543
Moderator: Brian Muirhead

Recorder: Bill Nesmith

Questions:

1) What technology will help achieve 10-year lifetimes?

Position statement: Genji Arakaki

2) What technology will help survival of high-g landings?

Position statement: C. Wayne Young

3) Are RTGs a workable power subsystem (size, location on the lander)?

Position statement: Mike Shirbacheh

List of attendees:

Larry Adams - MMC

Genji Arakaki - JPL

Wayne Arens- JPL

John Garvey- McDAC
Paul Gillett - GE

Owen Gwynne - ARC

Robert Karpen - JPL
Brian Muirhead- JPL

Bill Nesmith - JPL

Farley Palmer - Hughes

Dave Ryerson - Sandia
AI Schock- Fairchild

Mike Shirbacheh - JPL

Robert Smolley - TRW

Steve Squyres - Cornell

C. Wayne Young - Sandia

Exhibit 2 (contd)
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SECTION 2

SUMMARY OF CONCLUSIONS

2.1 SESSION A: SCIENCE AND EXPLORATION

2.1.1 In view of the stated science and human exploration

objectives, what are realistic for GNM and what should be

allocated to subsequent missions?

The workshop concluded that most of the stated objectives for

this mission should be retained. The meteorology, surface and subsurface

chemistry, volatiles, regolith structure, descent imaging, and entry

science objectives support both science and exploration. Seismology is of

interest primarily to science. No strong arguments have been offered that

seismic measurements are needed for exploration purposes. Narrow-band

seismology should be retained, but wide-band seismology may have

implementation problems on a surface lander, and should be retained only

if adequate isolation from lander and surface-generated noise can be

accomplished. Postlanding imaging from the lander on the surface can
certainly enhance the interpretation of surface measurements, but it is

not as important as descent imaging. Orbital objectives, such as

aeronomy, support imaging, and other orbital support measurements, are

all candidates for implementation by other missions. The workshop

strongly recommended that orbital measurements to support surface

meteorology be considered. It was also recommended that aeronomy be
included on the orbiter if it is possible to do so without seriously

complicating the spacecraft carrier design. The Mars Science Working

Group (MarsSWG) will convene three small workshops to address questions
in the areas of meteorology, seismology, and geochemistry/volatiles/

exobiology.

2.1.2 Should there be only one type surface station (e.g. penetrators)

or a mix of lander types? Also-how many? where? what
lifetime?

A major conclusion of the workshop is that two lander types
be used: hard landers for the long-life surface objectives and penetrators

for the short-life subsurface objectives. There should be 10 to 20 hard

11
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landers placed relatively evenly at widely separated latitudes (including
the polar regions) and longitudes, and at a variety of terrain types. These

landers should operate for many years, at least one Mars year at typical

3-sigma spacecraft-design lifetime probabilities and on the order of 10

years at some reduced confidence. Simultaneous data are desired from the

long-lived surface landers. Penetrators should be sent to about eight

sites, including the polar regions, and need last only a few weeks.
Measurements from the penetrators do not need to be simultaneous.

The two types of landers need not be part of the same mission,

and they could be launched on different launch vehicles in the same or a

different launch opportunity and by different agencies, including those
from other nations.

2.1.3 What instruments should be included in the lander and orbiter

payloads?

Strawman payloads for each lander type and the orbiter were

recommended. All suggestions for the payloads that follow were judged

to be preliminary and should be updated in the near future by the MarsSWG

workshops.

(1) Hard lander: high priority; a meteorology station
(pressure, temperature, wind, and aerosol measurements

at a minimum), narrow-band seismometer, descent

imager, alpha-proton-X-ray (a-p-x) instrument, and soil

electrochemical analyzer, and instruments for entry
measurements of acceleration, pressure, and

temperature (probably on the aeroshell). More difficult
to accommodate will be a differential scanning

calorimeter (DSC), an evolved gas analyzer (EGA) and a

neutron spectrometer. A landed imager and impact

accelerometer were listed at a lower priority.

(2) Penetrator forebody: a descent imager, alpha-proton-
X-ray instrument, DSC/EGA, neutron spectrometer,

impact accelerometer, and gamma-ray spectrometer, and
instruments for entry measurements of acceleration,

pressure, and temperature (on aeroshell). A soil
electrochemical analyzer was listed as a high priority,

but it may be difficult to implement without major

complexity.

12



(3) Penetrator afterbody: soil electrochemical analyzer.

Landed imager and alpha-proton-X-ray instrument at

lower priority.

(4) Orbiter: Strong desire for instruments for orbital

support measurements, especially for meteorology.

aeronomy package should be investigated, but it has
lower priority.

An

2.2 SESSION B: MISSION AND SYSTEM DESIGN

2.2.1 How do we get to polar sites and is a common lander design OK

for both low latitude and polar sites?

The workshop endorsed deployment of all landers from orbit,

using an elliptical, polar orbit (see Section 6.2, Submittal No. 1) that can
reach all latitudes. There is a 6-month wait for proper lighting for

descent imaging, which was judged not to be a big problem. Deployment

from hyperbolic approach has many problems and should be considered only

for fairly simple penetrators launched on a separate mission. A common

design for landers at all latitudes was judged to be possible; the only

exception was the design for penetrators that try to penetrate the polar

ice cap.

2.2.2 What is the best entry system - fixed or deployed aeroshells;

parachutes, or direct impact?

The workshop recommended the use of fixed aeroshells at

shallow entry angles as the least risky for launch in 1998. Both

deployable aeroshells and the use of steep entry-angle designs show

promise, but they have more development schedule risk for a 1998 launch.

Parachutes are recommended and, to reduce g loading,

crushable structures for the hard landers and possibly the penetrator

afterbodies. The concept of sizing the parachute for the specific altitude

target of each lander was offered. Also, a proximity sensor to impart a

retro-rocket impulse just before impact could reduce lander impact
acceleration from several hundred gs to less than 100 gs.

13



2.2.3 What are the desired and achievable accuracies for targeting
the landing sites?

There is a possible mismatch between desired and achievable
landing accuracies. High-probability accuracies are greater than 100 km
(3-sigma radius); with additional efforts to control deployment errors,
there is some promise of accuracies of 50 to 100 km. Some terrain types
desired for targeting may be in the 10- to 50-km range. Achieving this
accuracy is questionable without active guidance during atmospheric
entry. Target areas should be limited to the 50- to 100-km range. The
orbital retromaneuver delta-V should be imparted by a liquid system for
greatest accuracy. Guided entry was not judged feasible for these simple
landers.

Session B also considered a fourth question concerning
alternate mission and lander concepts. The rnajor alternate concepts
recommended for further study are (1) spread launches of landers over
several opportunities with smaller launch vehicles, (2) separate probe
carrier and orbiter communication functions into two missions, (3)
attempt a contract for communication services similar to that for
Comsat, (4) use a mix of at least two lander types with international
partners providing one or more.

2.3 SESSION C: SUBSYSTEM TECHNOLOGY

2.3.1 What technology will help achieve 10-year lifetimes?

The key problem for achieving long lifetimes on the hard
landers involves electronics and thermal control. The large number of
thermal cycles and-electrical on/off cycles (greater than 4000) will
stress electronic subsystems beyond the present levels of experience.
The failures occur in solder joints and interconnections rather than in the
parts themselves. Current electronics fail within 200 to 1000 cycles
when thermally cycled from -55 to 100°C. The key to extending the
lifetime is in limiting the thermal cycles to a narrower range, e.g., -20 to
20°C. Studies are needed to test the feasibility of thermal-control
designs. Testing of electronic designs for large numbers of cycles is
important.

14



2.3.2 What technology will help survival of high-g landings?

Current electronic designs have demonstrated survival of the
impact accelerations expected for hard landers and penetrators, which
range from hundreds to thousands of gs. Transverse accelerations may be

as high as the axial loads, and rebound accelerations may also be
significant. Improved impact models of Mars are needed for design and

testing purposes.

Current radioisotope thermoelectric generator (RTG) power-

source designs cannot survive the 1000+ g impacts that will be

experienced on the penetrator afterbody and on an unattenuated hard
lander. (See the following question.)

2.3.3 Are RTGs a workable power subsystem (size, location on the

lander)?

RTG power sources present a major set of developmental

problems for the GNM. Small RTGs of the necessary few watts of power
are currently available only for terrestrial use; they can probably be

designed to survive a few hundred gs and be space and nuclear-safety

qualifiable, but they will require considerable design analysis and testing.
In the current lander concepts, these lower g levels are experienced only

in the penetrator forebody. However, temperature control in the forebody

is a very severe design problem. Impact attenuation of hard landers and

penetrator afterbodies is a possible design approach, but lateral loads

may be a problem.

The results from Session A indicate that RTGs may be needed

only on the long-life hard landers and not the short-life penetrators. The
use of a proximity retro-rocket impulse to lower the lander impact

accelerations to less than 100 gs could relieve the RTG design problem.

Another way to lower the RTG impact loads is separation of the RTG from

the lander prior to impact, using either the descent parachute or a

separate chute. This would require an umbilical for power transfer and

analysis of other problems, such as lateral loads, landing orientation, and

temperature control.

15





SECTION 3

DETAILED PROCEEDINGS

3.1 PLENARY SESSION 1

The first plenary session began with a welcome by John

Casani, JPL's Assistant Laboratory Director for Flight Projects. The GNM

study leader, Fran Sturms, then reviewed the mechanics of the workshop

as presented in the invitation and workshop handout materials (see

paragraph 1.2).

Jim Martin brought a challange from NASA code E to "be
innovative."

The next three presentations at the opening session served to

review the science and exploration objectives for GNM. These objectives

were not to be viewed as firm requirements, but rather as goals to serve

as guidelines for the subsequent discussions. The viewgraphs presented

during this part of the workshop are referenced in this section as figures.

(In some cases, handwritten slides have been typed for these proceedings.)

The first presenter was Mike Carr, chairman of code E's Mars
Science Working Group (MarsSWG). Dr. Carr put the mission objectives

into the context of the series of robotic missions leading to the first

human landings on Mars. GNM completes the reconnaissance or global

assessment phase of Mars exploration (Figure 1). Primarily, the GNM

provides ground truth at a number of sites on Mars. The missions

following GNM comprise the validation phase of Mars exploration; this

phase increases confidence of our understanding of Mars to levels required
to evaluate and select sites and to design and fly missions to land humans

(Figure 2). He pointed out that this mission has been of interest to the

science community for many years and showed a recent set of objectives

from a code-EL workshop (Figure 3).

The next presenter was Steve Squyres, chairman of the GNM

subgroup of MarsSWG. Dr. Squyres presented the science objectives for

GNM in six parts: atmospheric science, internal structure, geochemistry

and mineralogy, volatiles, surface morphology, and regolith structure.

(See Figures 4 through 9.) Each of these experiment areas were detailed

as to the type of measurements, the kind of instrumentation, and the
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mission requirements. Additional science desired involves soil oxidation

state, aeronomy, magnetometry, heat flow, and entry science (Figure 10).

The science objectives divide naturally into short-lived subsurface

science and long-lived surface science. This in turn implies two types of
surface landers: short-lived penetrators and long-lived hard-surface

landers. (See Figure 11.) Finally, it was pointed out that both types of

landers will desire targeting to terrain types as small as 50 km, at
latitudes and longitudes over the whole planet, and at a wide range of
surface altitudes.

The third presenter was Dave Smith, representing the Science
Exploration Initiative (SEI) Mission Analysis and System Engineering

(MASE) organization at Johnson Space Center (JSC). He pointed out that
the robotic missions obtain both science and engineering data to support

the mission, spacecraft, and equipment design f_r the human missions

(Figure 12). The SEI objectives overlap the pure science objectives in

many areas. Th e key SElactivities to be supported_ by additional
knowledge about Mars are aeromaneuvers in the Mars atmosphere and site
selection for the human landings _ (Figures 13 and 14). Specific objectives

for GNM include supporting the site selection for the subsequent robotic

sample return mission and validating the global resource maps of Mars
compiled from remote sensing on such missions as Mars Observer (Figure

15).

3.2 SESSION A: SCIENCE AND EXPLORATION

Session A on Science and Exploration was held on February 6.

Papers submitted for discussion are reproduced in Section 6.1 and

referenced here by numbers in parentheses.

Dan McCleese (moderator) presented an overview of some of

the issues to be discussed (1). These included Science objectives for the

GNM, relevance of the GNM to the SEI, the role of the orbiter, and the

implementation approach.

Fran Sturms presented a position paper on the GNM mission

design (2). The objectives fit into four basic categories of long- and
short-lived surface landers and long- and short-lived subsurface

penetrators. Fran proposed surface hard landers only for the GNM, delaying

subsurface objectives for later in the mission set. The scientists present

overwhelmingly opposed such a solution, insisting that subsurface
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volatile and chemistry information is crucial for calibrating the remote
sensing data obtained by Mars Observer.

A broad-ranging discussion followed that questioned the need
for large Titan launches for the GNM: Perhaps a greater number of smaller
launches would be more appropriate. This seemed more in keeping with
the request for alternative strategies and concepts for implementing the
GNM and for involving international partners in the mission.

A philosophical discussion followed that ranged from the SEI
interests for the GNM to a simpler, smaller, and more fiscally
conservative mission than the one generally considered. Dave Morrison
stressed that the GNM should focus on objectives unique to a network
mission (3): the simultaneity of observations for meteorology and
seismology, and the ability to go places that will not be visited by the
other robotic exploration missions. Bruce Murray discussed at length his
views on what the GNM should encompass. He thought that a simple, hard-
lander mission involving launch on small expendable vehicles is,
politically, the most sensible approach. These landers would measure
properties for which enough information already exists to enable design of
a useful experiment. This would entail measuring atmospheric properties
and surface imaging. This view submits that not enough is known about
the seismology of Mars to allow meaningful measurements. Most of the
other scientists vehemently disagreed with this position: Seismological
measurements remain the only way to determine fundamental properties
of the interior. It was also pointed out, however, that there is no
fundamental incompatibility between meteorology and seismic
measurements at the same long-lived surface station, provided there is no
long-term mast or boom that would wave in a wind.

After lunch, Mike Carr discussed the science objectives (4)
attributed to the GNM by the MarsSWG. After a discussion that lasted
most of the afternoon, it was concluded that these science objectives
remain the best for the GNM. A table of the needs for the GNM for a
variety of disciplines was presented (4). This table shows that about 20
surface stations are needed for meteorology, 10 to 20 are needed for
seismology, and 10 or fewer are required for volatile and mineralogy/
chemistry science. A possible break between long-lived surface stations
and short-term penetrators was iterated from MarsSWG discussions.

The group overwhelmingly supported plans for a number of
small science workshops that focus on such critical questions as how
much does a simple surface station that is not firmly anchored to the
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ground degrade the seismic measurements? Another is how many
meteorology stations are needed and what additional measurements from
orbit need to be made simultaneously? A third is how many landers are
needed for geochemistry and volatile science, and are subsurface
measurements required? These questions will be addressed by three
upcoming workshops on seismology, meteorology, and geochemistry/
volatiles/exobiology objectives for the GNM.

Bruce Murray then presented a concept for adding balloons to
the hard landers now being considered for the GNM (5). These balloons
would allow high-resolution imaging of the Martian surface as well as
meteorology in the boundary layer. Tethered-, anchored-, and snake-
balloon concepts were presented and recommended for consideration as a
payload option.

Dan McCleese directed the focus of discussion to issues useful
for mission designers. A Variety of questions and suggestions surfaced.
They included: What ist_e current engineering design for a hard lander?
Is a hybrid hard lander/penetrator in which a hard lander has a spike for
effective coupling to the ground possible? Does a hard lander perform a
scientifically satisfaCtory group of measurements?

Dave Morrison suggested a strawman payload for a hard lander
(6). The payload would include instruments for meteorology, seismology,
surface chemistry, soil physics, and imaging. A second class of vehicle
was proposed to accompany the hard landers, namely short-lived
penetrators that concentrated on the volatile, mineralogy, geochemistry
science goals, Steve Squyres summed up this apparent division between
science on penetrators and hard landers (7). This implementation strategy
looked promising to the group and more design work on it was
recommended.

To focus on a possible strawman payload for this type of
mission, Bruce Banerdt presented a compilation of science instruments
and their masses, power, and data-rate requirements (8). Outside of
discussion about some of the instruments (e.g., a neutron spectrometer vs
a gamma-ray Spectrometer), this strawman was considered reasonable,
although most believed it was still a little: early in the mission-design
activities to accept a strawman payload. It was agreed that the mass,
power, and data-rate estimates need to be evaluated by the workshops
that focus on meteorology, seismology, and geochemistry/volatiles/
exobiology.
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Janet Luhmann presented an excellent summary of what was
known about the aeronomy of Mars and the need for additional
measurements (9). Most agreed that the orbiter will offer a good
opportunity for an aeronomy payload. The package proposed is under 100
kg, although some of the instruments require unimpeded ram directions
(without landers in the way) as well as fairly long booms. The spacecraft
orientation required to provide this ram direction may conflict with the
communications function of the orbiter, although a separate
communications satellite was suggested to alleviate this mismatch.

Bob Haberle suggested that atmospheric measurements from
orbit will be needed at the time the surface meteorology measurements
are made. While the science from these measurements is quite compatible
with the major goals of a network mission, most present were unwilling
to choose the orbiting atmospheric measurements over the aeronomy
measurements, given that an aeronomy mission had previously been given
a high scientific priority. Everyone agreed, however, that a balance has to
be achieved between lander and orbiter science and between orbiter and
surface meteorology, although this balance has not yet been reached.

Tom Economou presented information on a small, rugged alpha-
proton-X-ray instrument being developed. Although most scientists saw
the utility of this type of instrument, difficulties in interpreting the
results were noted, given that this instrument samples only a thin layer.
Anyone interested in more information is encouraged to talk with Tom.

The meeting ended with a wrap-up session that summarized
what would be presented at the plenary session.

Subsequent to the workshop, Paul Davis submitted a paper on
the objectives of a Mars seismology experiment (10).

3.3 SESSION B: MISSION AND SYSTEM DESIGN

Session B of the Global Network Mission Workshop focused on
issues relevant to the overall mission and system design. These issues
included the causes for the network mission to exceed reasonable costs
and feasibility and the conceptual design of the 90-day study penetrators.
Tom Penn was designated the moderator of this session, and Robert
Mostert the recorder. Materials submitted for discussion are reproduced
in Section 6.2 and referenced here by numbers in parentheses.

21



The issues raised in this session included (1) the ability to
place surface landers at the polar regions, (2) the feasibility of one long-
lived common lander design for both high- and low-latitude sites, (3) the
possibility of one common lander design to do both surface and subsurface
science, (4) the most feasible system to enter the Martian atmosphere D
fixed vs deployable aeroshellsDand the best terminal decelerator_
parachutes vs direct impact, and (5) the desired and achievable accuracies
for targeting the landing sites.

The first issue raised was emplacement of landers at the polar
regions. Could a long-lived common lander design be used? Could surface
and subsurface objectives be achieved with a single long-lived common
lander design? Phil Knocke and Jim Burke presented opening position
papers to facilitate discussion.

A mission design proposing an elliptical polar orbit to place
landers at the higher latitudes was presented by Phil Knocke (1). His
premise is based on a requirement to emplace landers above 80 degrees
latitude. Also, good lighting angles are necessary for descent imaging.
These two requirements constitute the major mission-design drivers. A
previous s_teisynchronous orbit design was able to empiace ianders at the
higher latitudes upon approach, but at very steep entry angles and poor
lighting conditions. The elliptical polar orbit allows landers to be placed
anywhere on the Martian surface at reasonable lighting conditions and at
shallower entry angles. The landers would be deployed from orbit instead
of on approach. This helps to avoid the larger landing dispersion of
approach-deployed landers. The orbit allows a second pass over the
planet, which gives the mission an element of redundancy for lander
emplacement. As such, this orbit design would permit aeronomy
experiments while the spacecraft waits to deploy the landers.

Jim Burke spoke about system design considerations and
options (2). This entailed the Mars network mission objectives, approach,
and desired results. He stated that the goals of the mission need to be
prioritized. Once the priorities have been established, different design
options could be eliminated. A systems design tree that shows the
different options of the different stages of emplacing a lander on the
surface of Mars from atmospheric entry to surface landing was shown. It
serves to remind the designer of the different choices available. For
example, a designer is reminded that the lander could use a parachute or a
ballute for atmospheric terminal descent. Jim showed a couple of lander
designs done in the past (e.g., Viking) using the design tree to point out the
alternative options chosen versus those options eliminated.
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Alan Friedlander of SAIC presented global contour maps of the

available communications time per sol between a lander and the orbiter

summed over all orbiter passes during that sol (3). The maps help to

clarify the one-sol communication interval between a lander at any given

place on Mars and the orbiter, using the elliptical polar orbit. Alan also
showed a configuration of a spacecraft with stacked aeroshells at launch

(3). After orbit insertion, each aeroshell would be individually deployed
from the spacecraft bus. Each aeroshell, containing two penetrators,

would then be its own spacecraft on its way to Mars. At Mars, the
aeroshells would enter the atmosphere individually towards their

designated landing sites. Alan's proposal is based on a communications
infrastructure that would be already available at Mars. A short discussion

ensued about the communications industry providing the necessary
infrastructure for a set fee. Friedlander also contributed an update to his

previous study of lander success probabilities (5), but this was not
discussed.

Manny Cruz of TRW presented the results of studies relevant to

steep entry flight path angles (6). The 90-day study penetrator is the
baseline lander. The study is based on the use of ballistic coefficients to

assess the terminal velocity, ground track, and angle of attack of the

lander with respect to steep entry flight-path angles. The results show
that different ballistic coefficients do not adversely affect the ground

track, but landing accuracies decrease with shallower entry flight-path

angles. An aeroshell or its equivalentmdesigned with any ballistic
coefficientmthat enters the atmosphere at steep flight path angles will

have a good landing accuracy. The terminal velocity increases and the

angle of attack decreases with larger (>10) ballistic coefficients. The
disadvantage of entering the atmosphere at steep entry flight path angles

seems to be the greater temperatures the entry vehicle will encounter.

A short-lived penetrator for the Martian poles derived from

the Comet Rendezvous Asteroid Flyby (CRAF) penetrator was presented by

Rich Reinert of Ball Aerospace (7). He suggested that a Martian polar

penetrator (a CRAF penetrator derivative) as an individual mission would
not be difficult. A modification would not be complicated because the

science objectives and the instrument complement for the Martian polar

caps are similar to those for the CRAF mission. The proposal assumes

that the polar caps are of composition similar to that of a comet. Jim

Martin asked if the CRAF penetrator could be used at lower latitudes; Rich

responded by suggesting that a major reconfiguration would be necessary.

23



A general discussion followed that summarized and concluded
the first set of issues. It was agreed that the polar caps could be reached
by landers with a good mission design. A single, long-lived common lander
could probably not be designed for both the higher and lower latitudes. A
cost estimate would be helpful to confirm this conclusion. The issue of
placing surface and subsurface science instruments on a single lander was
not addressed at this point, nor was the issue of alternative types of
landers (i.e., hard vs soft). Jim Martin suggested that, with international
partners, a mix of landers might be possible. A suggestion was also made
to use different opportunities to send different or a different number of
landers to Mars. This would allow designers to ensure mission success in
the case of a failure, to affect designs as needed, and to spread the loss of
a single mission failure over several missions. Martin also suggested a
look at the 1996 opportunity for a quick, inexpensive mission.

The second key issue raised at this session was the question,
"Can deployable aeroshell technology be used for this mission or should
fixed aeroshells be used?" Also, the question of using parachutes for
terminal descent versus direct impact of the lander was raised. Joe
Gamble of Johnson Space Center gave an opening position paper to begin
the discussion.

Joe Gamble presented results of a study that would help
identify deployment dispersion problems upon Martian atmospheric entry
(8). (Note" This contribution was rewritten and resubmitted after the
workshop.) The 90-day-study penetrator baseline design was used to
determine a ballistic coefficient. He compared the deployment of
aeroshells from orbit with that from approach and the dispersion
problems that result due to terminal v_elocities. His results show that
deployment from approach is risky unless large entry angles are used with
very large g loads. Heaiso observed that _arachute deployment altitude

will be critical in establishing terminal velocities. The higher the

altitude, the greater the mach number upon descent, which implies higher

g impacts.

Considerations and issues in an entry: and terminal-descent-

system design were prepared by Byron Swenson of SAIC, but presented by
Alan Friedlander (9). The presentation showed different types of entry-

system configurations done in the past. Byron Swenson has been studying

deployable aeroshells, but did not use one for the 90-day study, because he
did not think it could be developed by 1998. He has been looking at

different ways to jettison landers from aeroshells. Yet, a deployable
aeroshell is worth consideration. It would ease the packaging problem at
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launch. Rich Reinert mentioned that Massachusetts Institute of
Technology (MIT) has been looking at deployable accelerators, and MIT
should be contacted to identify progress.

Arden Albee of Caltech showed lander design drivers from the
standpoint of packaging at launch and deployment from the spacecraft
versus each lander's mass and structure or entry system, such as an
aeroshell (10). He used a design tree to show the results of different
landers that have been built or studied. They are the Soviet Mars 3, the
Soviet Venera 8, the Viking Lander, and the Ames penetrator of 1977. He
showed the choices made by each mission to highlight the different design
choices that can be considered in placing landers on Mars. He discussed
other lander designs that have been built and that are not penetrators.
Some aspects of a penetrator have not been thoroughly studied, such as a
long-lived power source that would survive high-g impacts. Alan
Friedlander commented that the instrument payload is very restricted on a
penetrator. In addition, Arden is concerned with the wide variation in
altitudes at which landers will be placed without taking into
consideration the entry angle and the resulting terminal velocity at that
altitude.

The discussion that followed summarized the issue and
concluded that because fixed aeroshells are well known and the technology
is available, the landers will be kept simple. Deployable aeroshells will
have to be excluded from any 1996 opportunity because of the development
schedule that will be required. However, they may not necessarily need to
be ruled out for a 1998 opportunity. The issue of a parachute versus
direct impact was raised because of the landing-site altitudes. At what
altitude is a parachute to be deployed for a high-altitude landing site in
order to decelerate the lander to an acceptable velocity? Jim Martin
mentioned that for the Viking lander, project management is concerned
with any altitude above 2 km, because the Viking landers would not have
decelerated to an acceptable velocity. Retro-rockets or retro proximity
fuses, like those the Soviets use, were suggested. Hence, a study is
needed to identify the altitudes at which the landers can be placed with
certain decelerators. A range of altitude regions will need to be studied,
in addition to the height-range variability.

The last key issue raised in this session was that of desired
and achievable accuracies for targeting surface landing sites. Les Sackett
of The Charles Stark Draper Laboratory (CSDL) was asked to present an
opening position paper (11).
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The desired landing accuracy for a long-lived surface lander
with meteorology and seismology instruments is on the order of 100 km.
The desired accuracies for short-lived landers with chemistry and
mineralogy instruments are on the order of tens of kilometers. Les
Sackett of CSDL, using the 90-day study penetrator as a baseline, showed
that a penetrator deployed from approach and deployed from orbit at a
flight path angle of -20 deg would have an approximate landing accuracy
of 300 to 350 km. A penetrator deployed at a flight path angle of -15 deg
would have an approximate landing accuracy of 450 to 500 km. Again,
steeper flight path angles improve landing accuracies. A comparison of
deployment from approach and deployment from orbit suggest that the
landing accuracy dispersion is not so different.

The ensuing discussion centered on how accurately landing
sites could be targeteci _andWith how much compTexity and cost. It is
clear that targeting control systems can be added to landers to decrease
landing accuracy errors, but these subsystems would increase the
complexity, costs, and mass of each lander. Hence, decisions must be
made to clearly identify the desired landing accuracies.

The remainder of the time was used to present and discuss
alternative issues and design considerations that did not seem pertinent
to the issues already cliscussed.

Bruce Crandall of Hughes Aircraft Co. told the session that
Hughes has been working On very high-g Subsystems to be used for Space
Defense Initiative (SDI) (12). Hence, he could not speak at length.
Significant and mature high-g technologies exist in the areas of
electronics, propulsion, imaging, and guidance systems. Moreover, he
raised a launch-vehicle issue. Is a Titan IV/Centaur the launch vehicle
that this mission will be Permitted to use? The use of that launch vehicle
implies a number one priority launch, and that has not been proclaimed for
this mission. He suggested using two or more Atlas/Centaur launch
vehicles. The total would have equivalent mass capabilities to that of the
Titan IV/Centaur and would provide multiple launches, which could satisfy
any redundancy or probability of a misSiOn success requirement. Each bus
would carry fewer landers, but this strategy would decrease the chances
of failing to emplace all the landers. That is, if all 20 landers were on
one spacecraft, and the first one could not successfully deploy--which is
required for deployment of the following landersmthe mission would be a
complete failure. Having but a few landers per bus and a total of four
spacecraft would overcome this potential problem. Finally, if only 10
landers were placed on two separate spacecraft for redundancy, the Titan
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IV/Centaur probably could not be launched from the same launch pad
within a 20-day window. Atlas/Centaurs could be turned around within 20
days.

Carlos Moreno of JPL showed a conceptual configuration of a
hard lander on which he has been working (13). It is based on a JPL study
done in 1988 and is similar to that used by the Soviets in the early 1970s.
A parachute would be used for terminal descent, and a crushable impact
absorber would be used to withstand the final surface impact. The lander
uses an RTG as its power source and includes meteorology, seismology,
and soil-oxidant instruments in addition to an alpha-proton-X-ray
spectrometer. An attempt to add descent imaging will be made on this
design. The design drivers for this lander include the size and mass of the
RTG, whether or not it can survive high-g impacts, and the size and mass
of the memory necessary for data storage. The latter is also a function of
data rate and transmission time. However, some think that memory will
not be a driver for this lander. The present design mass is approximately
10 to 15 kg.

Jim Burke of JPL presented a tethered balloon option for a
payload on a lander. (This is the Session A contribution No. 5 by Murray.)
It is an alternative to descent imaging. It would also be used for boundary
layer measurements. Bruce Murray of Caltech has been working on this
concept with some of his graduate students. However, several problems
are associated with a tethered balloon. First, packaging a pressurized
tank with gas is difficult. Second, filling the balloon with gas is not
trivial. Third, a good anchor is necessary to overcome any wind problems.
A solution to the anchor is the use of some sort of snake that is dragged
over the surface as the balloon pulls it. Another issue is the imaging done
by the balloon. This imaging will not permit identification of the lander
location. Jim Burke will continue to work with Bruce Murray to evaluate
tethered balloons.

John Garvey of McDonnell Douglas (MDAC) spoke about the
capabilities of a Delta launch vehicle using two or more Delta vehicles to
do a network mission (14). This presentation was similar to that of Bruce
Crandall with respect to launch vehicles. More than one Delta vehicle can
be launched in a 20-day launch window.

Other issues discussed following these presentations included
instrument payload feasibility. Which technologies can reach maturity for
this mission? Subsurface chemical-analysis instruments would be a
severe design driver. Jim Martin is not sure that we are looking at one
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mission to be done in 1998 only or if we are looking at other
opportunities. A concept of more than one network mission would have
merit for the human exploration group, which would be able to help select
certain landing sites.

The conclusions and recommendations of this session are
summarized in the workshop summary section.

Steve Bailey submitted a paper after the workshop for
inclusion in the proceedings (15).

3.4 SESSION C: SUBSYSTEM TECHNOLOGY

Session C on SubsYstem Technology was held on February 6.
Materials submitted for discussion are reproduced in Section 6.3 and are
referenced here by numbers in parentheses.

In the opening position statement on 10-year lifetime
survival, Genji Arakaki pointed out that the big concern is the large
number (greater than 4000) of temperature cycles, both from the Mars
day-night cycle and from the electrical power on/off switching.
Technology options include new packaging, coatings, and expansion boards.
Brian Muirhead pointed out that the subsurface components on penetrators
might see smaller fluctuations. However, the polar sites are very cold
(150 K) and the soil thermal conductivity is uncertain. Genji Arakaki
stated that current electronic packaging technology is good for 1000 to
2000 cycles at -55 to 100°C. Testing of existing packaging methods for
over 4000 cycles needs to be done. Byron Swenson remarked that the long
iifetirne follows a high-g landing, which may add to the problem. Wayne
Young recommended looking at technology used in the 20-year life for
nuclear weapons storage. Current programs are looking at high-g designs:
CRAF penetrator, tested to 400 gs, and Smart Pebbles, tested to
48,000 gs.

After lunch, Wayne Young presented information on the Sandia

penetrator experience (1). Sandia has a lot of experience with penetrator

technology and many tools are available for use in the GNM program. Young

concludes that technology exists to develop the Mars penetrators.

_-i- _--i-_i ......

Dave Ryerson described the Sandia Telemetry Department

practices and rules for building Iiigh-shock instrument electronics (2). A

key observation was that shock attenuators and energy absorbers have not
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worked well in Sandia's experience because of amplification of gs at some

frequencies and rebound loads.

Tom Komakek described high-g design concerns for RF
hardware (3).

Farley Palmer presented information concerning the GNM

technology questions from Hughes' experience base (4).

Mike Shirbacheh presented material provided by Teledyne

Energy Systems on the use of small RTGs in terrestrial applications (5).

AI Schock presented design concepts for penetrator RTGs based

on extensions of existing Fairchild RTG work (6).

3.5 PLENARY SESSION 2

The second plenary session of the workshop convened at 9 a.m.
on February 7. The purpose of this session was to hear summary reports

from the parallel sessions of the previous day and to develop workshop
conclusions. The viewgraphs presented during this part of the workshop

are referenced as figures in this section. (In some cases, handwritten

slides have been typed for these proceedings.)

The first presenter was Steve Squyres, representing the

Session A moderator, Dan McCleese. (See Figures 16 through 21.) It was
recommended that GNM focus on simultaneous global measurements in a

wide variety of terrain types and in particular in those types that would
not be visited by subsequent missions (e.g., the high latitudes and terrain

too rugged for the safe landing of rovers and humans). Boundary-layer
measurements were added to the meteorology objectives. The pros and

cons of the two main lander types were discussed, as well as some

variants, such as hard landers with "spikes" to penetrate the soil. A

number of science and engineering issues were identified. The three

science issues will be taken up by special MarsSWG working groups.

Tom Penn, the Session B moderator, presented summary

results for each of the three questions addressed in the Mission and

System Design session (Figures 22 and 23). In response to a fourth

question (Figure 24), a system-design tree (Figure 25) was presented to
show trades for alternate concepts. Several recommendations were made
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to study additional mission and system designs as funding will allow
(Figures 26 and 27).

Brian Muirhead, Session C moderator, presented a summary of
technology status and issues, and recommendations for each of the three
questions addressed in the Subsystem Technology session (Figures 28
through 31). There is no clear need for new technology; however,
considerable advanced development is needed in most areas for high-g
penetrators (Figure 32). An innovative option recommended for study is
the use of microthrusters to reduce landing accelerations to tens of gs.
To be ready for a 1998 mission, the top three areas needing immediate

advanced development are deployable aeroshells; small, high-impact RTGs;
and small retropropulsion for softer landings.

Fran Sturms led a discussion of the workshop conclusions,

using six forms (Figures 33 through 38) with blanks to be filled in. These

completed forms, along with notes and comments recorded to capture

details not apparent on the somewhat simplified forms, were used to

develop the summary conclusions documented in Section 2.

3.6 INFORMAL SESSION

The workshop was formally adjourned at 12:30 p.m. on

February 7, 1990, at the end of the second plenary session. After lunch, an
informal session was convened to allow those able to stay to have
additional discussions on items of interest.

A number of ideas on how to obtain the desired imaging of the

lander sites were discussed. It was pointed out that the large data
storage and recovery necessary in descent imaging could be avoided by

taking images from tethered balloons subsequent to landing or from

cameras lofted by mortar from the surface. These approaches would also

get the desired atmospheric boundary-layer measurements. However,
these techniques involve pointing-control problems. It was the consensus

that descent imaging was the best way to get images, which could be

continuously nested from orbital resolution levels down to submeter

resolution at the site. The case for postlanding imaging was judged to be

weak, especially if the descent images were good enough to identify

surface effects on the meteorology measurements. Landed imaging would,
however, allow identification of postlanding weather effects such as

frosts or wind deposits of dust around the lander site. Relatively

unobstructed imaging is desired.
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A number of ideas for getting the seismometer away from the
potentially disturbing influence of the surface meteorology station were
discussed. The seismometer could be deployed by arms away from the
lander where it could be screwed or driven into the soil or otherwise be
made to have good surface contact. The arm could also release the
seismometer, leaving a data and power umbilical. Another technique
would fire the seismometer away by means of a mortar.

The advantages of deployable aeroshells were discussed
further. The main advantages are smaller mass and less attachment space
on the orbiter. Testing deployable aeroshells in a Mars-like environment
will be difficult, and this contributes to the development schedule risk
for a 1998 launch.

Methods for "stacking" fixed aeroshells so that they take up
less room on the orbiter were discussed. Two ideas mentioned were a
sideward "frisbee" type release (which also imparts the desired spin) and
ejection from a stack in a "rifled" launch tube. The former may offer the
advantage of selection of specific aeroshells that have been tailored to
specific types of landing sites, e.g., with parachutes sized for different
altitudes.
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SCIENCE OBJECTIVES: ATMOSPHERIC SCIENCE

• SURFACE PRESSURE (SEASONAL VARIATIONS,

WEATHER SYSTEMS, WAVES, ATMOSPHERIC TIDES)
• AIR TEMPERATURE AND WINDS (BOUNDARY LAYER,

WEATHER SYSTEMS, DUST-RAISING MECHANISMS)

• AEROSOL PROPERTIES (DUST LOADING, RADIATIVE

PROPERTIES)
• HUMIDITY (WATER VAPOR TRANSPORT,

SURFACE/ATMOSPHERE EXCHANGE)

INSTRUMENTATION: METEOROLOGY PACKAGE

• T, P, WIND SENSORS
• SKY RADIOMETER

• P205 HYGROMETER? .

MISSION REQUIREMENTS:

• SURFACE PLACEMENT REQUIRED

• LONG LIFE REQUIRED

• MANY (>_20)STATIONS REQUIRED
• GLOBAL PLACEMENT REQUIRED, INCLUDING POLAR

REGIONS (MINIMAL LATITUDE/LONGITUDE
RESTRICTIONS)

Figure 4. Science Objectives: Atmospheric Science
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SCIENCE OBJECTIVES: INTERNAL STRUCTURE

. MARTIAN SEISMICITY AND RELATION TO GEOLOGY

• SEISMIC ATTENUATION PROPERTIES

• PRESENCE, SIZE, AND PHYSICAL STATE OF CORE

• THICKNESS, VERTICAL STRUCTURE, AND LATERAL

STRUCTURE OF CRUST

INSTRUMENTATION: SEISMOMETER

• SEISMOMETER TECHNOLOGY IS WELL ADVANCED

• CAGING/RELEASE MECHANISM REQUIRED

• INTRINSIC DATA RATE IS VERY HIGH; EVENT

RECOGNITION SYSTEM IS REQUIRED

MISSION REQUIREMENTS:

• SUBSURFACE PLACEMENT PREFERRED, BUT
SURFACE PLACEMENT MAY BE ADEQUATE FOR
MOST OBJECTIVES

• LONG LIFE REQUIRED

• MANY (_>10) STATIONS REQUIRED

• GLOBAL PLACEMENT REQUIRED (MINIMAL
LATITUDE/LONGITUDE RESTRICTIONS)

• ACCURATE TARGETING REQUIRED FOR LOCAL

NETWORK(S)

Figure 5. Science Objectives: Internal Structure
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SCIENCE OBJECTIVES: GEOCHEMISTRY AND
MINERALOGY

• MAJOR ELEMENT GEOCHEMISTRY (ROCK TYPE AND

PETROGENESIS)
• SELECTED TRACE ELEMENT CONCENTRATIONS AND

RATIOS (e.g., NATURAL RADIONUCLIDES)
• MINERALOGY (PHASE ASSEMBLAGES, HYDROUS

MINERALS, CARBONATES)
• SAMPLE WIDE RANGE OF ROCK TYPES

- ANCIENT CRATERED TERRAIN

- INTERMEDIATE AND YOUNG VOLCANICS

POSSIBLE SILIClC VOLCANICS

POSSIBLE AQUEOUS SEDIMENTS/CARBONATES

INSTRUMENTATION: GRS, m-P-X, DSC/EGA
• GAMMA-RAYSPECTROMETER (GRS)

- DETECTS MAJOR ELEMENTS AND NATURAL

RADIONUCLIDES

- SAMPLES LARGE VOLUME WITH NO SAMPLING

MECHANISM

- AT DEPTH, DETECTION OF ALL BUT K/u/'rH REQUIRES NON

RADIOISOTOPlC NEUTRON SOURCE

- GE REQUIRES T < 120 K, Nal HAS POOR RESOLUTION

- MATERIALS INTERFERENCE IS A PROBLEM

- CANNOT BE USED WITH RTG NEARBY

J

Figure 6. Science Objectives" Geochemistry and Mineralogy
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GEOCHEMISTRY AND MINERALOGY (continued)

• _-P-X

DETECTS MAJOR ELEMENTS

- NO COOLING, INTERFERENCE, OR RTG PROBLEMS

- REQUIRES DOOR OR SAMPLING MECHANISM

- SAMPLES VERY THIN LAYER

• DSC/EGA

- DOES SOME MINERALOGY; ESPECIALLY GOOD WITH

HYDROUS MINERALS AND CARBONATES

- REQUIRES SAMPLING MECHANISM

- COMPLEX INSTRUMENT

MISSION REQUIREMENTS:

• SUBSURFACE sAMPLING REQUIRED

• SHORT LIFE ADEQUATE
• ACCURATE TARGETING REQUIRED

Figure 6. (contd)
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SCIENCE OBJECTIVES: VOLATILES

• POLAR LAYERED DEPOSITS COMPOSITION

• CONCENTRATION AND DEPTH OF GROUND ICE

• HYDROUS MINERALS, CARBONATES, ETC.

INSTRUMENTATION: DSC/EGA,
N-SPECTROMETER

• N-SPECTROMETER DETERMINES H

CONCENTRATION
• SAMPLES LARGE VOLUME WITH NO SAMPLING

MECHANISM
• REQUIRES NEUTRON SOURCE, RTG, RADIOISOTOPE,

14 MeV PULSED NEUTRON GENERATOR

MISSION REQUIREMENTS:

• SUBSURFACE SAMPLING REQUIRED
• SHORT LIFE ADEQUATE

• HIGH LATITUDE REQUIRED
.f

Figure 7. Science Objectives: Volatiles
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SCIENCE OBJECTIVES: SURFACE MORPHOLOGY

• HIGH-RESOLUTION CHARACTERIZATION OF LOCAL

SURFACE SITES FOR A VARIETY OF GEOLOGIC

INVESTIGATIONS

• NESTED IN LOWER-RESOLUTION COVERAGE FOR

CONTEXTUAL INFORMATION
• IMPORTANT FOR INTERPRETATION OF

GEOCHEMICAL RESULTS

INSTRUMENTATION: DESCENT IMAGER

• COMPACT OPTICS/CCD SYSTEMS ARE RELATIVELY

STRAIGHTFORWARD
• VERY HIGH DATA RATE IMPLIES SUBSTANTIAL

MEMORY REQUIREMENTS

MISSION REQUIREMENTS:

• INDEPENDENT OF SURFACE/SUBSURFACE
OPERATION

• INDEPENDENT OF LONG/SHORT LIFE

Figure 8. Science Objectives: Surface Morphology
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SCIENCE OBJECTIVES: REGOLITH STRUCTURE

• REGOLITH STRENGTH PROPERTIES VS. DEPTH

• ANCILLARY DEPTH INFORMATION

INSTRUMENTATION: ACCELEROMETER

• SMALL, SIMPLE, RUGGED
• HIGH INSTANTANEOUS DATA RATE

MISSION REQUIREMENTS:

• SUBSURFACE SAMPLING REQUIRED

• SHORT LIFE ADEQUATE

Figure 9. Science Objectives: Regolith Structure
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NOTES

OTHER POSSIBLE SCIENCE

• SOIL OXIDATION STATE

• AERONOMY PACKAGE ON ORBITER

• MAGNETOMETRY

• HEAT FLOW

• ENTRY SCIENCE

GEOLOGIC UNIT AND LATITUDE REQUIREMENTS
ALSO IMPLY ELEVATION REQUIREMENTS _=_

7

APPARENT NATURAL DiVISION_INTO
SHORT-LIVED/SUBSURFACE SCIENCE AND
LONG-LIVED/SURFACE SCIENCE

Figure 10. Additional Science
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TWO VEHICLE TYPES

A)

B)

~8 SHORT-LIVED PENETRATORS

• GRS (Nal; Ge POLAR?)
• (_-P-X
• N-SPECTROMETER/14 MeV SOURCE

• DSC/EGA
• ACCELEROMETER

• DESCENT IMAGING

~16 LONG-LIVED HARD LANDERS

° SEISMOMETER
• METEOROLOGY PACKAGE

• DESCENT IMAGING

° (_-P-X

BOTH REQUIRE ACCURATE TARGETING
AND MINIMAL LATITUDE/LONGITUDE
RESTRICTIONS

Figure 11. Two Vehicle Types
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GNM Workshop Conclusions

Mission Objectives

Meteorology

Narrow Band Seismology

GNM

X

Surface Chemistry

Descent Imaging

Landed Imaging

X

X

X

Sub-surface Chemistry

Volatiles

Wide Band Seismology

Aeronomy

Orbital Imaging

Other Orbital Support
Observations

Entry Science

x(1)

X

X

TBD(2)

try (3)

(4)

X

Other

X

X

(1) weak justification, needs work
(2) need input from seismology workshop
(3) work accommodation in FY90 spacecraft design studies
(4) a large number of participants feel this should be
explored further

Figure 33. GNM Workshop Conclusions: Mission Objectives
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GNM Workshop Conclusions

Payload Types

Long life Hard Landers only

Long life Penetrators only

Yes No

X

X

Number

Hard Landers + Short life
Penetrators X(1) 20+8

Short life Penetrators only

Add Aeronomy

Other

?

?(2)

X

Note: These conclusions are to be interpreted as FY90
priority for JPL study.

(1) also look at separate implementation of this
combination, e.g., different launch vehicles, different
countries, earlier launch of penetrators, use of modified
CRAF penetrator for polar sites.

(2) other innovative designs may be possible, e.g., a
lander with a "spike" penetrator.

Figure 34. GNM Workshop Conclusions: Payload Types

70



GNM Workshop Conclusions

Instruments

Aeronomy "package"

Meteorology station

pressure
temperature
wind
aerosols

Narrow-band

seismometer

Descent imager

Landed imager

a-p-x

DSC/EGA

Soil Electrochemistry

Neutron spectometer

GRS

Impact
accelerometer

Entry
accelerometer

pressure
temperature

Surface
Lander

X

1

X

X

X

X

?

X

Penetrator
Forebody Afterbody

X

1

x ?

x

? x

X

X

X

X

Orbiter

1

2

Other instruments TBD. This list to be updated by MarSWG workshops by April
1990 for inclusion in FY90 studies.

1 Lower priority.

2 Some participants suggest meteorology support on orbiter.

Figure 35. GNM Workshop Conclusions: Strawman Payload for FY90 Studies
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GNM Workshop Conclusions

Orbit Design

Deploy on Approach (1) rl yes

Inclination I_ 90

IN 45

D

Wait for Lighting

Aeronomy

yes

rl early

I-7 late

IT] both

I-_ no

37-39 sun-synch

I--I no

Landing Accuracy

radius, 3-sigma desired achievable

> 100 km t--1 !_ hi prob

50-100 km IT] i-_ maybe

10-50 km _

< lOkm _] [--1

(1) approach deployment to be assessed for separately launched short-life

penetrators.

Figure 36. GNM Workshop Conclusions: Orbit Design and Landing Accuracy
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GNM Workshop Conclusions

Lander Design

Polar landers Common with Equatorial (1)

F-I Separate from Equatorial

Sub-surface F! None

_-I Short life Penetrator

FI Long life Penetrator

Entry System

entry angle I-_ shallow

aeroshell 117 fixed

orbit retro delta-V F--1solid

guided entry _ yes

steep

deployable (2)

1i7 liquid

no

terminal deceleration IT1 parachute

I-_ retro-rockets (3)

crushable structure (4)

I-_ penetrator

I--] other
(1) may be a problem with pentration of hard ice
(2) shows promise, but riskier for 1998 launch
(3) proximity impulse solves RTG problem with high gs
(4) for penetrator afterbody and hard landers

Figure 37. GNM Workshop Conclusions: Lander Design
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GNM Workshop Conclusions

Subsystem Technology

Optics and
Detectors

Electronics

Telecom

Power

Mechanical

Thermal and
Other
Environmental
Control

10-year life

problem area
needing advanced
development

possible problem
area related to
electronics and
sub-surface
RTGs

high-g

problem for RTGs,
needs advanced

development and
testing

Figure 38. GNM Workshop Conclusions: Subsystem Technology
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Jet Propulsion Laboratory/California Institute of Technology
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Session A, Submittal No. 3

David Morrison
Ames Research Center
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Session A, Submittal

Michael H. Cart

U.S. Geological Survey

No, 4
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Session A, Submittal No. 5

Bruce Murray
California Institute of Technology

James D. Burke

Jet Propulsion Laboratory/California Institute of Technology
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JPL TETHERED BALLOON CONCEPT
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Session A, Submittal No. 6

David Morrison
Ames Research Center
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MARS GLOBAL NETWORK MISSION
STRAWMAN LANDER PAYLOAD

• METEOROLOGY

- PRESSURE
- DUST LOAD (DIRECT AND SCATTERED

LIGHT)

• SEISMOLOGY

- HIGH-FREQUENCY SEISMOMETER

• SURFACE CHEMISTRY

- (_/p/x (MAJOR ELEMENT CHEMISTRY)

• SOIL PHYSICS

- ACCELEROMETER

• IMAGING

- to be determined
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Session A, Submittal No. 7

Steven W. Squyers
Cornell University
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PENETRATORS OR HARD LANDERS?

PENETRATORS

• PROS:

- ENABLE DEEP SAMPLING
- SOME HERITAGE (MILITARY, CRAF)

• CONS:

- SEVERE CROSS-SECTION CONSTRAINTS
- RTG HEAT MAY POSE A PROBLEM
- HIGH gs REQUIRED FOR PENETRATION

HARD LANDERS

• PROS:

-SIMPLER INSTRUMENT ACCOMMODATION
- SIMPLER HEAT REJECTION

• CONS:

- DEEP SAMPLING VERY DIFFICULT
- LITTLE HERITAGE

APPARENT NATURAL DIVISION INTO
SHORT-LIVED/SUBSURFACE VEHICLES AND
LONG.LIVED SURFACE VEHICLES
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TWO VEHICLE TYPES

A) ~8 SHORT-LIVED PENETRATORS

• GRS (Nal; Ge POLAR?)
• _-p-x
• n-SPECTROMETER/14 MeV SOURCE
• DSC/EGA
• ACCELEROMETER
• DESCENT IMAGING

B) ~16 LONG-LIVED HARD LANDERS

• SEISMOMETER
• METEOROLOGY PACKAGE

• DESCENT IMAGING, _-p-x

BOTH REQUIRE ACCURATE TARGETING AND
MINIMAL LATITUDE/LONGITUDE RESTRICTIONS
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THREE KEY QUESTIONS

(1) TO WHAT EXTENT DOES SURFACE
EMPLACEMENT DEGRADE SEISMIC
SCIENCE?

(2) TO WHAT EXTENT DOES SURFACE
EMPLACEMENT DEGRADE
GEOCHEMISTRY/VOLATILES SCIENCE?

(3) HOW MANY STATIONS ARE REAL/_Y
REQUIRED FOR METEOROLOGY AND
SEISMOLOGY?
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Session A, Submittal No. 8

William B. Banerdt
Jet Propulsion Laboratory/California Institute of Technology
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Session A, Submittal No. 9

Janet Luhmann

University of California at Los Angeles
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Vu- graph Captions

I)

2)

3)

4)

5)

6)

7)

8)

9)

I0)

11)

12)

13)

A llst of science objectives which point to the value of a Mars aeronomy

mission to an overall program of understanding Mars and its environment.

Altitude profiles of the neutral upper atmosphere and ionosphere obtained

with the Viking Landers.

Example of radlo-occultation derived electron density profiles of the

Martian ionosphere from Mariner 9.

Altitudes of the peak electron densities versus solar zenith angle showing

the effects of dust storm activity. Dust storms heat the lower atmosphere

and thereby raise the density in the upper atmosphere - causing the

ionosphere to form at higher altitudes.

lllustration of the small size of the Mars-solar wind interaction region

compared to that of the Earth. Earth's relatively strong magnetic field

creates a large magnetic bubble which protects the atmosphere and

ionospher e from direct interaction with the solar wind.

Comparison of a model of the Martian ionosphere (Shinagawa and Cravens,

1989) with data from Viking (Hanson et al., 1977). Notice that the top

of the ionosphere appears to be "removed" in the observed profile. This

is one effect of solar wind scavenging.

One mechanism by which the solar wind can remove ions is through MHD

(magnetohydrodynamic) forces associated with the interplanetary magnetic

field, which "hangs up" on the conducting obstacle of the ionosphere.

Mars also has an extended neutral upper atmosphere (exosphere) of atomic

oxygen produced by the photochemistry at lower altitudes. Hydrogen is also

present at high altitude.

The solar wind "picks up" ions created from those regions of the neutral

exosphere that extend out into the flowing solar wind and magnetosheath

plasmas. Some are removed, while others reimpact the dayside.

Some flux levels of O" ions at various energies expected in the vicinity

of Mars from the pick-up process (from a model by Luhmann, 1990).

In addition to ion pick-up, planetary atmosphere particles escape by virtue

of at least two other processes. Some of the neutral atoms simply have

upward-directed velocities greater than the -5 km/s escape velocity.

Other neutrals escape because they are "sputtered" from the atmosphere by

the pick-up ions (Luhmann and Kozyra, 1990).

Energy spectrum of picked-up O" ions precipitating into the dayside

atmosphere of Mars from a model by Luhmann and Kozyra (1990).

Upgoing neutral oxygen atom spectrum from the normal nonthermal escape

mechanism (top) and with the sputtered population (bottom).
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14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

27)

Illustration of magnetic fields in the dayside ionosphere of Venus as seen

by the Pioneer Venus Orbiter (left) and as modeled (right) by a

diffusion/convection calculation. The Martian ionosphere may everywhere

have fields similar to those in the subsolar region of Venus (region I).

When the subsolar region of the Venus ionosphere is magnetized, it is

"disturbed," with electron density fluctuations of magnitude shown here

in panel (V) on the left (from Woo et al., 1988).

The geometry of these observations at Venus is as illustrated here. The

spacecraft was submerged in the ionosphere and transmitting to Earth when

these disturbances were detected.

Further detail on the appearance of the ionospheric disturbances in the

Doppler shift of the telemetry signal. The bottom panels have been

corrected for the expected Doppler shifts. These kinds of disturbances

may also occur in transmissions through the subsolar region of the Martian

ionosphere.

NASA documentation in support of a Mars Aeronomy Mission (MAO) to address

these and other science objectives exists in the form of a report prepared

by JPL. This is the cover sheet.

The strawman payload recommended in the MAO report.

A description of the strawman payload instruments.

Cross-correlation of science objectives and proposed MAO instruments.

The Mars Network Mission Orbiters may provide the vehicle for carrying out
an effective MAO mission.

The availability of two spacecraft is of tremendous benefit if one can
monitor the solar wind while the other makes measurements of the Martian

system.

Some desirable characteristics of MAO spacecraft are included in this list.

The periapsis altitude would determine what science could be done.

The current Mars Network Spacecraft design would need to somehow

incorporate the features of an aeronomy spacecraft like the Pioneer Venus

Orbiter on the probe carrier.

Further description of the PVO spacecraft, showing the desirable

characteristics of unobstructed ram-face instruments, a magnetometer boom,

and body-mounted solar cells.
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Mars Aeronomy Mission

Science Objectives

Upper Atmosphere:

properties and variability (e.g., response to dust

activity, solar wind conditions)

loss processes/evolution

storms, seasons, solar

Ionosphere:

Source of Nightside Ionosphere (e.g., auroral activity?)

temporal and spatial variability/disturbances (e.g., response to dust storms,

seasons, solar activity, solar wind conditions)

Magnetic Field:

- nature/origin

- variability

- effects on energetic particle (radiation) environment

Solar Wind Interaction:

significance of planetary magnetic fields

comparisons with Venus and Earth

Vu-graph 1
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AERONOMY RESULTS FROM VIKING LANDERS

(neutral atmosphere)
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RESULTS FROM RADIO OCCULTATION EXPERIMENTS
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NASA Technical Memorandum 89202

Mars Aeronomy Observer:
Report of the Science
Working Team

.._'2" \i
...I \_...

_N

October 1, 1986

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California
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TABLE V.I MAO SWT RECOMMENDED INSTRUMENTS

MASS POWER TELEMETRY 1

CORE PAYLOAD

Neutral Mass Spectrcmeter 2 (NMS) i0.0

Fabry-Pero t Interferometer (FPI) 13.5

UV + IR Spectrometer (UV + IRS) 5.0

Ion Mass Spectrometer (IMS) 2.5

Retarding Potential Analyzer + Ion

Driftmeter (RPA + I[/M) 4.5

Langmui r Probe (ETP) 2.0

Plasma + Energetic Particle

Analyzer (PEPA) i0.0

Magnetometer (MAG) 3.0

Plasma Wave Analyzer (PWA) 5.5
Radio Science 3 (RS) 4.5

_.5 180

5.5 30

7.0 130

1.5 60

4.0 80

4.0 30

9.0 320

3.5 200

3.5 130

12.54

SECONDARY PAYLOAD

60.5 kg 59.0 W 1160 bps

Infrared Atmospheric Sounder (IAS) 8.0

UV + Visual Synoptic Imager (UV + VSI) 9.0

Neutral Winds/Temperature (NWTS)

Spectrometer i0.0

7.5 260

8.0 i000

9.0 180

27.0 kg 24.5 W 1440 bps

TOTAL 87.5 kg 83.5 W 2600 bps

i Individual instrt_nent rates can be highly variable and will depend upon

the final payload and orbit selection. The rates listed are based

upon typical duty cycles for each experiment and they have been

averaged over the orbit (i.e., 6,000 x 150 km orbit has been ass_ned).

2 Includes limited wind measuring capability.

3 Consists of S-band transponder and stable oscillator.

4 i0 W (continuous) for the stable oscillator and 25 W (10% duty cycle)

for the S-band transponder.

Vu-g raph 19
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TABLE V.2 MAO SCIENCE OBJECTIVFS AND INSTRUMENTS

Regions

Neutral Atmosphere

Structure Ionospheric Structure

Solar Wind

Interaction

NMS

FPI

RS

UV + IRS

IAS*

NWTS*

UV + VSI*

IMS

RPA + IF24

ETP

RS

_%G

PWA

PEPA

PEPA

MAG

_A

IMS

RPA + IDM

ETP

RS

UV + VSI*

Processes

Global Energy

Photochemistry Balance Nights ide

+ Escape Rates (Thermal+Winds) Ionosphere

NMS NMS IMS

IMS FPI RPA + IDM

UV + IRS NWTS ETP

ETP ETP PEPA

IAS* IMS MAG

NWTS* RPA + I[IM I_4A

PEPA UV + VSI*

PWA

IAS

UV + _SI*

Dayside SW
Interaction

PEPA

MAG

PWA

IMS

ETP

RPA+ IEM

Pickup Of

Planetary

Ions

PEPA

MAG

VWA

Magneto-
tail

E_namics

PEPA

MAG

PWA

*Secondary payload instrument
Vu-graph 21
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Mars Aeronomy Mission

Desirable Characteristics:

_)rbit:

elliptical (variable periapsis from <200 km (-110-150 km?), apoapsis ~1-5 R M)

polar (or high inclination)

rate of periapsis motion ~1 hour LT per week to sample all local times

spacecraft position in orbits can be controlled (phased)

Duration:

to cover as much of a Martian year as possible (for seasonal coverage)

Spacecraft:

Instruments identical on both spacecraft

onboard propulsion

body mounted solar cells (for low drag)

option to spin or despin (use momentum wheel)

extendable boom for magnetic, electric field experiments

Vu-graph 24
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Periapsis Altitude versus Science

Altitude Science (cumulative)

>400 km - extended nightside ionosphere "rays"

- escaping ions and neutrals

- bow shock, magnetosheath, magnetotail
- "PHOBOS-2" science

> 300 km - top of dayside ionosphere

- precipitating ions

- upper atmosphere

>200 km - upper ionosphere (structure, dynamics, induced magnetic field)

>150 km - intrinsic magnetic fields (?)

< 150 km - ionosphere peak (~120-130 km)

- intrinsic magnetic fields (?)

< 100 km - aerobraking environment

Vu-graph 25
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Abstract

A seismic network on Mars should: 1) have enough stations (e.g., 24) to characterize

the seismicity of the planet for comparison with a diversity of structural features; 2) be

comprised of low noise stations, preferably underground, 3 to 4 orders of magnitude more

sensitive than those used on Viking; 3) record over a sufficient band-width (DC-30 Hz) to

detect micro-earthquakes to normal modes; 4) record for a sufficient duration (10 years)

and data rate (10 s Mb/day/station) to obtain a data set comparable to that from the

Apollo mission to the Moon so that locations of major internal boundaries can be inferred,

such as those in the Earth, i.e., crust - lithosphere - asthenosphere - upper - lower phase

transitions - outer - inner core. The proposed Mars Global Network Mission provides an

opportunity to sense the dynamics and probe the interior of the planet. We discuss the

seismic objectives, the availability of the instrumentation and trade-offs to meet them.

Introduction

The science objectives of the Mars Global Network Mission include installation of a

seismic network on Mars in order to measure the seismic activity of the planet and to

characterize its structure for comparison with Earth. Preliminary specifications for the

mission call for installation of up to 24 penetrators or hard-landers on Mars, in pairs, at

12 widely dispersed locations. Landers making up each pair will be installed hundreds of

meters to several kilometers apart, thereby achieving some redundancy. We review here the

science objectives of the seismic experiment, the instrumentation specifications required to

meet these objectives, and report on some recent progress on construction and testing of

a prototypical hard-lander seismometer.

Science Rationale for Seismic Network on Mars

Seismology has told us more about the Earth's interior than any other geophysical
method. Such information from Mars is vital to progress in understanding the evolu-

tion of the solar system. The Viking spacecraft landed on Mars in 1976. The seismometer

on Lander I failed to uncage whereas that on Lander II provided 0.24 Earth years of obser-

vational data (Goins and Lazarewicz, 1979). The Lander II data contained mainly wind
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noise and possibly one marsquake but even that is doubtful. The seismic part of this

mission was of secondary importance to the search for life experiments. We are not yet

sure that marsquakes exist.

Apart from the uncaging problem on Viking I, wind noise on Viking II was extreme

because the instrument was located high up on the Lander near antennae, which vibrated

or rocked the structure in response to the wind forces. Also, because only one instrument

operated on Mars, it was almost impossible to tell if a given event was a wind burst or a

marsquake. The seismometer was less sensitive than the Lunar (Apollo) instruments due

to size, weight and power constraints. However the experiment did place bounds on noise

levels. It has been estimated that a network of "seismometers more sensitive than the

Viking instrument by at least a factor of 103"... " emplaced by penetrators or deployed as

small packages can operate on the planet without being affected by typical Martian winds"

(Anderson et al., 1977).

Science Goals of Mars Seismic Network

Scientific questions that a seismic network on Mars can address depend on whether

the instruments are short period (10 seconds to 10 Hz) long period (DC to 10 seconds) or

broad-band (DC to 30 Hz) and whether they are 1-component or 3-component. Ideally they

should be 3-component, broad-band, but this places severe constraints on installation, and

volume and weight of the instrument package, but has the return that the science goals will

be met faster than if the performance is restricted. Table 1 lists the seismic science goals

separated into those achievable with short period instruments and long period instruments.

Short Period Seisrnometers

1. Are there marsquakes?

2. How do their locations compare to structural features such as rift zones, volcanoes,

and uplift zones?

3. How does the attenuation of seismic waves compare with Earth and the Moon where

an order of magnitude difference was observed?

4. Are there major internal boundaries in Mars similar to those within Earth and

the Moon, i.e., crust-lithosphere-asthenosphere-upper-lower phase transitions-outer-inner

core?

5. Is there sub-surface structure that yields information on the Martian hemispheric

dichotomy (e.g. 1=1 convection)?

6. What are the dynamics of impacts on Mars from meteorites?

161



7. What are the focal mechanisms of marsquakes and how do they relate to inferred

stress fields, e.g., from isostatic imbalance?

Long Period Seismometers

8. Do large impact events or marsquakes generate measurkble normal modes which can

be used to estimate velocity and density distribution?

9. Can we detect surface wave dispersion?

10. What is the Love number of the Planet?

11. Can we detect annual or Chandler wobble generated by internal changes of the

moment of inertia?

Table 1 Scientific Questions for Mars Seismic Array

Science Goals of Mars Seismic Network

If we knew Mars as well as we know the internal structure of the Earth from seismology,

not only would would we be exploring a new planet, we would also be adding fundamentally

to our understanding of the evolution of the Solar System irtcluding the formation and

composition of both Mars and Earth. Solar Nebular theories of the compositions of the

planets predict that the volatile content, oxidation state and silicate iron ratios increase

with distance from the Sun. The distribution of elements within a planet is determined by

the temperatures during formation. For Mars we know only the mean density and moment

of inertia (and there is still considerable debate on this, Kaula et al., 1989, Bills, 1989).

Further progress is hampered because models satisfying these constraints allow trade-off

between mantle and core densities, and core size. Direct determination of the size of the

core and density profiles, by seismic means, would constrain the overall composition of the

planet. Models of the thermal evolution of Mars (Schubert et al., 1989) since formation

differ as to whether the core is solid or molten. An important factor in this regard is the

amount of Sulphur in the core, which if it is the 15% as inferred from the SNC meteorites,

results in a completely molten core, but if much less, can result in a solid core. Attenuation

of S-waves would tell us about the fluidity of the core.

We assume that Earth's core is mainly iron but with a substantial amount of lighter

element, or elements, based on estimates of uncompressed density, shock wave data, and

consistency with meteorite (type I carbonaceous) compositions. There are nonetheless un-

certainties associated with this view. Are the finite strain theories used for decompression

of the density truly applicable? What is the light element, or elements? Are the mete-

orites a relevant geochemical reference frame? Comparison of Earth with another planet

will allow us to test the hypotheses used on Earth.
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Installation of Mars Seismic Network

Various methods to install seismometers on Mars include implantation by penetrator,

deployment on the surface from a rover, or by hard, rough or soft-landers. The g loads on

the instrumentation range from thousands of g for a penetrator and hard lander, hundreds

of g for a rough lander and tens of g for a soft lander.

Penetrators

Penetrators offer an attractive way to implant a seismometer because the seismometer

is firmly coupled to the planet, and is unlikely to experience the wind generated rocking

motions that were thought to have generated noise on the Viking instrument (Anderson et

al., 1977). Penetrator technology is well advanced. Approximately 18,000 penetrators were

dropped in Southeast Asia and radioed information on troop movements from seismic and

microphone sensors which was detected by planes at 20,000 feet. The idea of a penetrator

mission to Mars dates back to reports by JPL (Briggs et al., 1975) and Sandia (Lumpkin

et al.,1974). Other studies made in the mid seventies include those by Westphal et al.,

1976, Blanchard et al., 1976, and Greely and Bunch, 1976.

Burial of the seismometer beneath the surface by a penetrator will reduce wind noise.

Also remoteness from a lander will eliminate internally generated spacecraft noise, both

electrical and mechanical, as well as wind generated vibrations of the superstructure.

Burial will also keep the seismometer thermally insulated from diurnal and other sur-

face temperature changes. This is critical for long period seismometers which, if installed

at the surface, record strong signals generated by thermoelastic strains, both in the sur-

rounding rock and in the instrument itself. At short periods, thermoelastic changes are

buffered by the thermal inertia of the instrument.

Presently we expend much effort digging pits to install sensors 1.5 m into the ground in

our field installations on Earth. For short period recording, it suffices to cover the pits.

For intermediate period recording, the pits are filled with insulation. However, first class

seismic observatories are usually located in vaults deep underground such as mine shafts,

tunnels, or in bore-holes. A penetrator installation on Mars is a practical compromise.

Surface Versus Penetrator Installation

A surface installation, though attractive because of its simplicity, compromises the qual-

ity of the seismic data obtainable. Ground coupling can not be assured. Proximity to wind

and temperature changes would probably limit the instrumentation to short period only.

However surface installations worked on the Moon, though they did not have to deal with

winds. There are, however, advantages to designing two types of landers, a surface one for

the seismic package and a sub-surface penetrator for short-lived (1 month) experiments

such as soil properties, mass spectrometry etc. It would remove the need for a small RTG,

since the short term experiment in the penetrator could run on lithium batteries. It also
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removes the possibility of contamination of the chemical analyses by radioactive products

from the RTG. A softer surface lander for the seismometer would reduce the shock toler-

ance requirements for the RTG and seislnometer system. This may be critical for the RTG

since, because of its extreme temperature (1000°C) the thermocouples can not be bonded;

it may not survive shocks greater than a few hundred g.

Although it should be tested, it is probable that a large proportion of seismic short

period information on Mars could come from instruments installed on the surface. The

trade-off in simplifying the installation would be the loss of long period signals. Also, the

low end of the short period band would be noisier than that at depth. We ran a series

of tests in the alluvium in the caldera at Long Valley, California, in which a short period

sensor was buried and the background noise measured as a function of depth in a wind

of about (4.0 m/s) 8 knots. In the frequency band tested, 5 Hz - 30 Hz, there was no

perceptible difference in background noise. Such tests need to be performed over the full

frequency range and for different wind and surface conditions, before effects of burial can

be quantified. Shedding wind vortices from obstacles can generate noise in the seismic

band dependent on wind speed and obstacle shape.

Viking mission data showed that mean seismic amplitude increased as the wind velocity

squared (Anderson et al., 1977) for winds ranging from 3 m/s to about 10 m/s. Optimal

design of a surface installation will require the instrument package to be of a streamlined

shape . It will need to have the capability to attach to the surface securely. It will also

need to be kept isothermal (gradients less than 10-5°C/m) and at constant pressure (to

within 10 mbar).

Table 1 shows the science objectives (1-7) that could be achieved with a short period

seismometer installed at the surface. We could measure the seismicity, the travel times,

fault plane solutions, invert travel times for radial structure, including detection of the

Martian core. We would miss out on (8 - 11), in particular, surface waves and normal

modes, which would be regarded by most seismologists as an extremely high price to pay.

Normal modes will give an independent check on the radial structure determined from

travel time analysis of body waves. One large marsquake which generated a wide spectrum

of normal modes would allow inversion for internal radial structure; that would take years

using short period travel-time data alone. Measurement of lateral variation in the excited

modes, at nmltiple stations, can be used for determination of global heterogeneity. Surface

waves measured at multiple stations provides a method to measure upper mantle lateral

heterogeneity, which will be particularly interesting beneath the Tharsis plateau region.

Detection of lateral heterogeneity means all stations should be broad-band. We conclude

that too much science is lost if the seismic installations are restricted to (surface) short

period installations. All instruments should be broad-band, installed either in penetrators

at depth or, if on the surface, they should have good coupling, preferably to bedrock, and

be insulated from temperature and pressure fluctuations.
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Data Acquisition Specifications

Mars' seismic activity is thought to lie between that of Earth and that of the Moon

(Kaula, 1984). If Mars' seismicity obeys a Gutenberg Richter law, with b value = 1, such

as is observed on Earth, with instruments a factor of 103 more sensitive than Viking, 3

orders of magnitude more earthquakes should be detectable. As well as marsquakes, land-

slides of over steepened crater walls and meteorite impacts will generate seismic signals.

On Earth, installations of comparable sensitivity to that proposed for Mars, detect about

1 earthquake of magnitude=5.5 per day world-wide. A marsquake of this magnitude would

probably not have been observable had it occurred further than 90 degrees from the Viking

instrument.

If Mars seismograms are similar to those on Earth in order to capture the important

phases, P,S, ...multiple ScS etc., recording at 50 samples/second should continue for several

hours after initiation of a moderate sized event. After this time a low sampling rate (1

sample/second) could be used to detect normal modes. In areas of seismic swarm activity,

for example active volcanic regions, the local earthquake activity can be as much as 100

events per day, requiring continuous recording.

On the Moon, an average of 4 events per day were detected comprised of: unclassified

events (2.4/day), deep moonquakes (1/day), meteoroid impacts (0.6/day). Events on the

Moon persisted for several hours, because of the high Q (4000) of the Lunar mantle (Dainty

et al., 1976; Nakamura et al., 1976). For a Lunar-type activity it would be necessary to

save data for several hours per day, at 50 samples/second, to record the full wave trains of

the seismic signals.

These considerations indicate that the daily data budget of a seismic station can be

calculated as 3 components at 50 samples per second for 24x3600 seconds at 30 bits per

sample (24 bit A/D and 6 bit gain range) = 3.88x10 s bits/day. With data compression,

such as event detection, this number can be reduced; l0 s bits/day per station would provide

an adequate coverage. If 2 transmissions were made to an orbiter per day, this amount of

data would require an on-board 6 Megabytes of RAM.

Investigation of seismicity requires setting up a network of at least 3 stations since this
is the minimum needed to locate an event. However to measure local, regional and global

seismicity at least 9 should be installed, that is, a 3-station local network with stations

separated by about 20 km, a regional network of separation 200 km and three stations

distributed across the planet. We propose that the local array be installed in the Tharsis

region where earthquakes are expected from the associated stresses due to inferred isostatic

imbalance. The regional and global networks would extend out from this base. To measure

seismicity at diverse structural settings, several local networks should be installed. The

proposed network of 24 seismometers at 12 different locations with closely separated pairs

will achieve these goals.
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Seismometer Specifications

There is currently no seismometer available that would withstand the shock associated

with penetration. Either presently available ones, with the desired sensitivity, will have to

be modified, or a new design implemented. The seismometer design should be predicated

on considerations of ruggedness and simplicity. Leaf spring seismometers such as the

Ranger (Kinemetrics, Pasadena, California) have the required ruggedness.

In 1962 Lehner et al.,(1962) report (2000') drop tests from a helicopter of the Ranger seis-

mometer which was clamped with all moving parts immersed in fluid (150 cc of n-heptane).

Decelerations were in the range 3000-7000 g. After cushioning the various components,

the final design survived a series of 7 drops with no degradation of performance.

Coil spring designs such as the Mark products (Houston, Texas) L4C or the HS10

(Geospace, Texas), are also rugged but have less tolerance to non-verticality. The re-

sponse of a damped inertial seismometer depends on the mass, the spring constant and

the damping factor. The low frequency response of a velocity transducer is critically de-

pendent on the value of the resonant frequency. Since the response to ground displacement

falls off as about 1/(frequency squared) the useful bandwidth is about a decade above and

below resonance. With high signal to noise ratio and wide dynamic range, the useful band-

width can be extended to 3 decades, e.g., 0.01 Hz to 10 Hz, for seismometers of resonant

frequency 0.5 Hz. However a typical range for an L4C, as used in the USGS network in

Southern California, is 0.1 to 10 Hz.

One way to extend the dynamic range and linearity of an inertial seismometer is to

use force-balance feedback in the form of either a magnetic or electrostatic restoring force

proportional to the ground acceleration. The former consumes power whereas the latter,

while consuming negligible power, provides a weak force and is typically used on long period

instruments (such as the LaCoste gravimeters of the IDA array). Alternatively addition

of a displacement transducer, sensitive to sub angstrom displacements, can provide a low

frequency channel output with flat response to ground acceleration with a minimal power

requirement.

The final position of the penetrator may be well off vertical. The seismometer must

either work at any angle or have a levelling mechanism. Seismometers with the mass

suspended from coil springs have little clearance and so jam if they are not close to vertical.

For example, the L4C jams at 17 ° off vertical. The mass of the Ranger seismometer is

attached to leaf springs at either end so that when it is tilted the transverse shear strength

of the flat springs prevents lateral movement which would otherwise cause it to jam against

the casing. In fact it can be converted to a horizontal seismometer merely by rezeroing

the mass to the position of greatest sensitivity. The commercially available Ranger from

Kinemetrics has a diameter of 11.1 cm excluding casing. This is too large to be directly

transferred into a penetrator (diameter 9 cm). A seismic sensor is required that has the

versatility and ruggedness of the Ranger but is small enough to fit in a penetrator and has

a broaxt-band transducer.
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In 1977 the Bendix Corporation (Perkins 1977) presented a design for a multi-instrument

penetrator including a 3-axis seismometer. The seismometer was attached to a levelling

table pivotted on a monoball bearing. Two motor drives 90 degrees apart, attached to

the table via spherical bearings and flexures, axe used to level to within 1 microradian.

The transducer consists of a vertical geophone and a North American Rockwell biaxial

bubble tiltmeter which can both be used as a two axes horizontal seismometer and also

as the levelling transducer. However this apparatus was not built. Levelling to within

10 -e is difficult. We favor a simpler design which does not have such stringent levelling

requirements.

Number of sites

Number of landers

Number of channels/lander

Number of samples/s
Bandwidth

Sensitivity

Displacement Resolution

Free period
Power

Data rate

A/D

Gain Ranging

Dynamic Range

Clip Level
On Board RAM

Clock Accuracy
Calibration

Shock

Weight seismic mass

Weight sensor

(exclusive of housing)
Diameter

Height

Temperature control

Vacuum

Spring resonances

Mass Centering

12

24

3

50 sp/s
DC-30 Hz

10-11g

10-12m

0.6 seconds

100 milliwatts (sensor)

1.0 watts (signal acquisition)

1000 b/s or 10 s b/day
24 bit

6 bit

140 dB

10-4g

6 Megabyte
10 millisec

1/day

10,000g for 2 millisecs any axis

3x0.16 kg

3x0.5 kg
9.0 cm

3x15.0 cm

lO-S°C/m

10 mbar

> 80 Hz

+- 90 degrees; 6 volt motor

Table 2.

Specifications for Mars Global Seismic Network

Specifications for the Mars Network Seismic stations are listed in table 2. Seismometer

specifications are based on presently available force balance seismometers, including the
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Guralp (Guralp Systems, Reading, England) seismometer and the Strekeisen seismometer

(Wielandt and Strekeisen, 1982) which have the sensitivity required but, owing to the

Bendix hinges that support the boom, they do not have the required ruggedness. Spec-

ification of the digital acquisition system is based on systems currently in use by IRIS

(Incorporated Research Institutions for Seismology) for the permanent and portable net-

works.

Brassboard Prototypical Penetrator Seismometer

One of the most popular modem broad-band seismometers is the recently developed

Guralp force-balance feedback seismometer, the mechanical part of which resembles, in

many ways, a leaf spring micro-gravimeter designed by R.V. Jones (Jones and Richards,

1973). The difference is that the Guralp employs Bendix hinges to pivot the boom with a

leaf spring supplying a'restoring torque whereas in the R.V. Jones design, the leaf springs

also perform the function of the hinge. The Bendix hinges are too weak to withstand the

high deceleration impacts.

Cap

Figure 1 Leaf spring seismometer designed to be shock tolerant.
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We have constructed a leaf spring seismometer based on the R.V. Jones design. This de-

sign has an advantage that it works 13 ° off-vertical without post-implantation adjustment

and fitted with an adjustable re-zeroing mechanism would work in any orientation. There-

fore a three component set could be installed in a penetrator for which the default would

be no post impact adjustment, if the penetrator ends up close to vertical, and minimal

rezeroing adjustment if it ends up well off vertical. Even then, if the rezeroing system fails,

some data would be achieved, albeit at reduced sensitivity. Basically the ruggedness of leaf

springs is achieved by employing 2 parallel Beryllium Copper springs on which the mass is

suspended. A photograph and schematic of our sensor is shown in figure 1. Although it is

more rugged than the Guralp seismometer, the trade-off is that it is about 1/3 as sensitive.

The position of the mass is detected by capacitance micrometry. Eventually a magnet-

coil assembly will be used to provide force feedback as in the Guralp seismometer. By

adjusting the filters for the force feedback output a wide dynamic range can be achieved.

Implementation of a Laboratory Impact Tester

In order to test the prototype, we assembled a laboratory impact simulator (Kewitsch,

1989). This has enabled us to conduct impact tests in the laboratory at UCLA to elim-

inate obvious design flaws before going to the more extensive testing at Sandia National

Laboratories, Albuquerque, or from helicopter drops. Validyne Engineering (Chatsworth,

California) donated a drop tower to the project. We added 8 bungee cords stretched over a

pulley system, allowing 100% stretch of the cords to accelerate the drop, to give an effective

drop of 40 feet (figures 2 and 3). An accelerometer/charge amplifier system measures the

deceleration; the output is recorded on a signal analyzer (see figures 2,3,4). The system

was calibrated at Environmental Associates, Chatsworth.
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and examples of deceleration pulses.
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We subjected the leaf spring sensor to impact impulses of 3 g secs (15,000 g at 0.2 ms,

figure 3) for a variety of combinations of peak pulse and duration. It survived longitudi-
nal shocks well but lateral shocks caused distortion of the frame supporting the springs.

Components must be modified and the design changed until performance survival is guar-

anted.

conclusion

Seismometers, many orders more sensitive than those on Viking, emplaced on Ma_s, will
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detect marsquakes, meteorite impacts and, possibly, landslides. To identify the locations

of events, and to correlate phases, at least 4 stations are required, 3 for location and a

fourth for redundancy. To examine diverse geological sites, several different regions should

be instrumented; A total of 12 sites with 2 stations per site would achieve these goals.

Emplacement by penetrator, with detachable forebody, achieves good coupling, isola-

tion from surface temperature and wind pressure effects; but the high g loads risk the

seismometer and probably rules out using an RTG.

Emplacement by hard-lander on the surface, could achieve fair coupling, if post-

emplacement mechanisms are employed (such as driving in a spike or drilling). It will

need special provision for isolation from temperature and wind pressure effects, which if

only partially successful, will result in a short period narrow band station only. High g

loads can be minimized, to less than several hundred g's, if a rough-lander is used.

Leaf spring, force-balance feedback, seismometers have the wide band-width, dynamic

range, shock tolerance and sensitivity to be used in penetrators or surface landers. They

axe light but consume more power than narrow-band magnet-coil velocity transducers. We

have tested a brass-board suspension design, which approaches the necessary ruggedness,

but has about 1/3 the sensitivity of a state-of-the-art instrument.
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INTROD UCTION

The purpose of the Global Network Mission (GNM) is to deploy simple landers

on the Martian surface in late 1998. The objective is to create a globally distributed

network of ground stations which will collect environmental data, perhaps for as long

as several years. The GNM presents unique mission design challenges, which are

addressed by the following essay.

The GNM mission concept calls for two carrier spacecraft, each equipped with a

number of simple landers. Some of the landers may be deployed from approach, either

to reduce carrier mass prior to orbit insertion, or to reach latitudes not available from

the carrier orbit. The remaining landers are deployed from orbit.

One configuration for the Global Network Mission was proposed in a report

from the Exploration Precursors Task Team to the Office of Space Science and

Applications. 1 This formed the basis of a previous orbit design for the GNM. 2 The

following analysis uses this mission scenario as a point of reference, but results from

the current study are generally applicable to a wide range of GNM mission variants.

FACTORS INFLUENCING MISSION DESIGN

The need to minimize the orbit insertion AV of the carrier implies that the carrier

orbit be as elliptical as possible, and have a low periapse altitude. Elliptical orbits also
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lead to lower de-orbit AV's than circular orbits.

A number of other requirements act in concert to lay severe constraints on the

orbit design for this mission. Among them is the need to distribute the landing sites

globally. The overall goals of the mission, as well as guidance from the Mars Science

Working Group, indicate a need to emplace landers near the Martian poles. This calls

for an orbit capable of reaching latitudes of at least +80". Coupled with this

requirement is the need for good lighting angles at impact, to support descent imaging.

Ideally, the sun elevations at impact would never exceed 30" or fall below 15 °. An

acceptable range of solar elevations is 10" to 45". 1 The lighting conditions, coupled

with the requirement for extensive latitudinal dispersal, constitute the major orbit

design drivers.

In most cases, the lander is restricted to a given range of entry flight path

angles. This has particular significance in the case of landers deployed from approach.

The circumstances of the interplanetary trajectory, in particular the declination of the

arrival asymptote, produce a minor circle of impact points which satisfy the desired

entry angle. This leads to severe restrictions on the maximum north and south

latitudes available to an approach lander. For example, a high negative approach

declination produces rather low maximum northern latitudes at the desired entry

angle. The only way to achieve impact at the North Pole in this case is to enter at

prohibitively steep entry angles. 2 In addition, approach-deployed landers must accept

whatever lighting conditions are available at their impact latitude.

A SS UMPTIONS

The current analysis uses the nominal GNM mission plan described in Reference

2. This specifies a launch period from December 6, 1998 to December 26, 1998, and an

arrival period from September 22, 1999 to October 9, 1999. Entry interface was defined

at an altitude of 125 kin, and the nominal entry flight path angle at this point was taken

to be -20". The impact point was determined by propagating the free space trajectory

from entry interface to an altitude of 10 km. Impact was assumed to occur directly

beneath this point. (Atmospheric deceleration was not specifically addressed. The

effects of drag would change the impact point by only a very few degrees along-track.)

As mentioned earlier, this was only a reference scenario. The results are atxplicable to

a range of entry angles and mission options.
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The nominal deployment scenario described in Reference 2 was retained for this

study. Figure 1 illustrates the deployment technique, in which the lander's de-orbit AV

is applied tangential to the carrier's motion, and parallel to the entry velocity vector.

This assures zero angle of attack at entry. The advantage of this mode of deployment

is that no attitude sensors or attitude adjustments are required after deployment. All

orbit-deployed landers are deployed from a fixed point in the carrier's orbit, and

always impact at a fixed true anomaly with respect to the carrier's periapse location.

As the carrier periapse moves due to nodal and apsidal rotation, the impact point

moves along the surface of the target planet. The orbit must be chosen such that the

nodal and apsidal motions place the impact points at favorable lighting conditions.

Note that the maximum latitude available from orbit is equal to the orbital inclination.

Longitudinal placement is achieved by making very small changes in the orbital period,

causing the ground track to "walk" in longitude.

PREWOUS ORBIT DESIGN

The nominal orbit design described in Reference 2 involves one carrier in a 45"

inclined orbit, and a second carrier in a complementary, 135" retrograde orbit. Both

carriers are in 1/5 sol site-synchronous orbits with periapse altitudes of 200 km. Figure

2 shows a plot of sun elevation at impact vs. latitude of impact for the 45" orbit. As

shown, immediately after insertion, the carrier can deploy landers at favorable sun

elevation angles. In this orbit, there is a single sweep of deployment opportunities

from 45"N to 45"S. The retrograde, 135" orbiter must wait between 70 and 150 days

after arrival before deploying its landers. The retrograde orbiter sweeps once from

45"S to 45"N.

The advantage of the nominal orbit design is that some landers may be deployed

immediately after arrival. This orbit does not allow easy attainment of high latitudes,

however. In order to reach the North Pole, a lander would have to be deployed on

approach, and enter the atmosphere at very steep entry angles (-43.9" to -49.8"). 2 A

lander placed at the North Pole would also enter in darkness. Another factor to

consider is the lack of deployment redundancy; there is only one deployment sweep

from 45"N to 45"S. Favorable lighting angles do not occur again for several hundred

days, and only for a narrow range of latitudes.
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POLAR ORBIT

Figure 3 shows a plot of solar elevation at impact vs. latitude of impact for a

carrier in a 1/5 sol orbit, with an inclination of exactly 90" and a periapse altitude of

275 km. The graph applies to a direct, periapse insertion from a northern approach at

the start of the arrival period. Initially, the impact point is at the North Pole, which is

in darkness. After waiting approximately 160 days, however, the impact point has

moved to the Southern Hemisphere, and the lighting angles have moved into the

acceptable range. Shortly thereafter, the impact point sweeps from the South Pole to

the North Pole, remaining at good lighting angles. After the North Pole is reached, the

impact points move south again, staying at reasonable lighting conditions until a

latitude of 55"S is attained.

This situation occurs, in part, because the impact point moves from the South

Pole to the North Pole as the Sun is moving from the Southern Hemisphere to the

Northern Hemisphere. Figures 4 and 5 illustrate how the impact point follows the

Sun. In addition, it is necessary that the orbit plane be placed properly with respect to

the Sun, and that the rate of periapse advance be chosen to complement both the nodal

movement with respect to the Sun, and the rate of change in solar declination. The 1/5

sol orbit is the most elliptical site-synchronous orbit with the required characteristics,

and the 275 km periapse altitude provides the best lighting conditions for both the

south-north sweep and the sweep from the North Pole to 55 3. The situation is similar

at the end of the arrival period, although a small periapse rotation at insertion is

required.

The advantages of such an orbit are evident. It allows landers to be plac_d

anywhere on the Martian surface at reasonable lighting conditions and at the desired

entry angle. A measure of redundancy is afforded by the second sweep from 90"N to

55 "(3. (This sweep could be used as backup in the event of failed landings on the first

sweep.) The polar landers would be deployed from orbit instead of approach, and

would enter at the nominal entry angle. The option exists to deploy all the landers

from orbit, thereby eliminating the need for two deployment techniques, and avoiding

the larger landing dispersion of approach-deployed landers.

The major disadvantage of this orbit design is the 160 day wait time required

before lander deployment. This interval is largely unavoidable, as the orbit only slowly

drifts into the required solar geometry. It should be noted, however, that for the 1998

opportunity, the wait interval allows the dust storm season to pass before first
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deployment. The time could be used for other purposes as well, such as aeronomy

measurements. The carrier could be placed in an orbit with a lower periapse, and then

elevated to the 275 km altitude for a small investment in AV.

CONCLUSIONS

A 1/5 sol, polar orbit with a periapse altitude of 275 km offers the best

circumstances for orbital deployment of the Global Network Mission landers. It

allows easy polar access at nominal entry angles, and global dispersal of landing sites

at lighting angles suitable for descent imaging. The polar orbit allows the option of

deploying all the landers from orbit. A wait interval of 160 days after arrival is

required before deployment can commence.
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Given the mission objective to deploy a number of small landers to the surface of Mars at various
latitude/longitude locations, it is of interest to obtain a global perspective of the communications
link geometry between the landers and a data relay orbiter. Specifically, the question to be
answered is what is the total time interval over one martian day ( 1 sol) that a lander at any given
latitude and longitude can communicate data to the orbiter. Results should be obtained for more
than one elevation angle constraint (lander antenna design issue), and also for several time points
into the mission since the orbiter's periapsis location moves under the influence of Mars oblateness
perturbation. This paper presents such information in terms of global contour maps of available
communications time per sol summed over all orbiter passes on that day. Global data of this type
complements more detailed local site data such as communications range and elevation vs time per

pass.

The reference mission launched in 1998 arrives at Mars in late September 1999 and the orbiter is
placed into a polar orbit (90 deg inclination) with periapsis altitude of 275 km, apoapsis altitude of
6903 km, and orbit period of 1/5 sol. Periapsis latitude is initially at 27 deg N and moves
southward at the rate of about 1 deg/sol. Landing sites for orbit deployment are displaced about 56
deg from the orbiter's periapsis, thus starting near the north pole and moving southward. If the
landers have descent imaging capability with a requirement for low sun elevation angles between
15 deg and ~ 30 deg, then the first deployment from orbit must be delayed until sol # 180 after
arrival. Thereafter, all landing site latitudes are accessible with good values of sun angle. Pole-to-

pole coverage is accomplished in about 6 months.

Communications time contour maps are included here for sol #'s 180, 232, 318, 361, and 404
corresponding to orbiter periapsis latitudes of 35 S, 90 S, equatorial, 45 N, and 90 N. For each of
these days, there is a map for both a 15 deg and 45 deg minimum elevation constraint on the
lander-to-orbiter line of sight. The jagged appearance of the contour lines is due to computational
resolution in interpolating between a finite number of latitude/longitude grid points. Although the
contours should really be smooth, the general information content is represented by the lower
resolution maps shown here. An example of the tabulated, finite-grid data points is also given.

Communication with all sites is possible at the 15 deg elevation constraint, at times only for several
minutes per sol but more generally for a much longer time up to 14 hours per sol. Significantly
less time is available with a 45 deg elevation constraint, and at certain times in the mission some
localized regions of the planet are inaccessible. Still, one may conclude that the reference orbit
selection will support a more than adequate communications link through the mission timeline with
landers emplaced at any desired location on Mars.
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COMMAP - COMMUNICATIONAVAILABILITYMAP SOL#404 15 deg

COMMUNICATIONSHORIZON ELEVATIONANGLE IS 15.0 DEGREES

ORBITALELEMENTSFORTHE ORBITERON 19990929.0000:
A: 6986.2E=0.4743621= 90.00 NODE= 129.93ARGP= 153.27MEANO= 0.00

START DATE: 20001116.0000 STOP DATE: 20001117.0260 TIME STEP IS 0.0010DAYS

NUMBEROF MINUTES THAT THE SITE-ORBITERLINK IS AVAILALBEDURING THIS PERIOD TABULATEDBELOW:

EAST WEST

LONGITUDE LATITUDE LONGITUDE

-BO. -70. -60. -50. -40. -30. -20. -I0. O. I0. 20. 30. 40. 50. 60. 70. SO.

O.

5.

10.

15.
20.

25.

30.

35.

40.
45,

50.
55,

60.

65.

70.
75.

80.
85.

90.
95.

100.

105,

I10.

115.

120.

125.
130.

135.

140.

145,

150.

155.

160.

165.

170.

175.

IBO.

185.

190.

195.

825. 791. 739. 651. 498. 315. 163. 128. 95. 68. 45. 24. 19, 13. 13. 19. 30.

827. 789. 740. 652. 498. 274. 167. 132. I01. 75. 53. 36. 26. 17. 14. 16. 33.

822. 792. 742. 660. 501. 233. 170. 135. 105. 81. 58. 40. 30. 22. 17. 17. 33.

822. 792. 739. 661. 511. 204. 171. 138. 109. 82. 59. 45. 30. 23. 17. 16. 30.

824. 791. 742. 664. 516. 204. 168. 137, lOB. 82. 62. 43. 32. 22. 17. 17. 30.

824. 791. 740. 657. 501. 210. 170. 138. lOB. 79. 59. 42. 30. 22. 16. 16. 30.

822. 792. 737. 655. 498. 265. 167, 135. 104. 75. 55. 39. 26. 20. 14. 17. 30.

825. 791. 736. 652. 498. 310. 164. 130. 96. 68. 45. 30. 16. 13. 13. 17. 32.

824. 791. 734. 648. 492. 333. 194. 137. 86. 56. 27. 22. 16, 13. 13. 17. 30,

821. 791. 739. 648. 492. 347. 236. 143. 94. 46. 33. 22. 19. 17. 14. 17. 30.

821. 798. 734. 642. 492. 351. 255. 141. 71. 50. 37. 29. 22. 16. 14. 16. 30.

822. 791. 733, 644, 491. 356. 258. 145. 71. 52. 39. 29. 23. 19. 16. 17. 32.

822. 793. 733. 644. 492. 350. 249. 138. 68. 49. 36. 27, 20. 16. 16. 16, 32.

822, 791. 734. 647, 492. 340. 228. 135. 84. 37. 29. 22, 16. 13. 13. 17. 33.

825. 788, 736. 649, 495. 324. 183. 124, 91. 62, 32. 23. 17. 13, 10. 17. 29.

825. 792. 736. 652. 494. 295. 163. 130. 98. 71. 49. 33. 22. 14. 13. 17. 29.

822, 791. 737. 657. 495. 240. 167. 134. 104. 78, 55. 39. 29. 20. 16. 17. 29,

822. 792. 737. 660. 500. 206. 168. 137. 107. 79. 58. 43. 27. 22. 17. 14. 29.

822. 791. 740. 660. 516. 203. 168. 137. 107. BI. 60. 42. 30. 23. 17. 16. 29.

824. 789. 740. 65B. 504. 206. 170. 135, lOS. 79, 59. 43. 30. 20. 16. 17. 29.

824. 791. 739. 654. 500. 236. 167. 134. 104. 7B. 55. 39. 26. 20. 14. 17. 30.

822. 792, 737. 652. 498. 298. 164. 128, 98. 71. 48, 33. 20. 16. 13, 17, 30.
824. 791. 734. 648. 497. 325. 190. 124. 91. 60. 33, 22. 16. 12. 12. 17. 30.

822. 792. 734. 645. 495. 340. 222. 140. 91. 35. 26. 20. 14. 14. 14, 17. 33.
822. 792. 734. 642. 494. 351. 248. 140. 7B. 50, 37. 27, 22. 19. 14. 17. 32.

824. 789. 734. 642. 491. 354. 253. 140. 71. 53. 39. 30. 24. 17. 14. 17. 32.

824. 792. 734. 642. 492. 351. 249. 134. 72. 53, 37. 29, 22. 19. 14. 16. 32.

822, 791. 734. 644. 497. 346. 2)6. 138. 84. 42. 27. 22. 16. 16. 14. 17. 32.

822. 789. 734. 64B. 495. 333. 190. 120. B5. 55, 30. 23. 17. 13. 10. 17, 32.
821. 791. 736. 651. 497. 309. 163. 128. 95. 68. 45. 24. 17. 13. 12. 16. 30.

825. 789. 736. 655. 501. 246. 167. 132. 102. 75, 52. 37. 24. 19. 14, 17. 30.

825. 791. 740. 662. 500. 223. 170. 135. 107. 78. 56. 42. 29. 20. 14. 16. 30.

824. 791. 739. 661. 514. 204. 170. 135. 105. BI. 60. 42. 30. 23. 16. 13. 30.

B22. 789. 737. 661. 510, 206. 170. 137. 107. 81. 58. 43. 30. 22. 17. 16. 30.

822. 789. 739. 657. 503. 22B. 168. 134. 105. 79. 56. 39. 27. 20. 17, 19. 30.

822. 792. 737. 655. 498. 2BI. 166. 130. I01. 73. 50. 35. 24. 17. 16. 19. 30.

822. 791. 737. 651. 497. 318. 176. 125. 95. 65. 40. 22. 17. 12. 13. 19. 32.

824. 791. 736. 649. 497. 338. 199. 13B. 84. 52. 26. 20. 16. 12. 14. 17. 30.

824. 791. 734. 645, 495. 350. 245. 141. 8B, 46. 33. 24. 19. 16. 16. 19. 32.

825, 789. 734. 648, 494, 356. 255. 133. 71. 53. 37. 29. 22. 19. 16, 16. 32.

360.

355.

350.

345.

340.

335.

330.

325.

320.

315.

310.

305.

300.

295,

2_0.

285.

280.

275.

270.

265,

260.

255.

250.

245.
240.

235.

230.

225.

220.
215.

210,

205,

200.

195.

190.

IB5.

IBO.

175.

170.

165.
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SOL #404 15 deg (contd)

EAST
LON6ITUOE

200,

205.

210.

215.

220,

225.

230.
235.

240.

245.

250.
255.

260,

265.

270.

275.

280.

285.
290.

295.

300.

305.

310.

315.

320.

325.

330.

335.

340.

345.

350.

355.

360.

LATITUDE

-80. -70. -60. -50. -40. -30. -20. -10. O. 10. 20. 30. 40. 50. 60. 70. 80.

822. 791. 736. 645. 494. 354. 258. ]40. 72. 53. 39. 29. 23. 17. 14. 16, 32.

824. 7B9. 736. 645. 495. 351. 246. 140. 84. 48. 35. 23. 19. 17. 14. 16. 32.

822. 789. 736. 649. 498. 340. 219. 137. 82. 45. 30. 22. 17. I_i 1_. 17. 30.

822. 791. 736. 648. 497. 321. 176. 127. 95. 65. 42. 24. 17. 13. 12. 17. 30.

824. 791. 737. 657. 500. 285. 168. 132. 101. 73. 52. 35. 23. 17. !4. 19. 30.
822. 791. 739. 660. 500. 239. 171. 137. 105. 79. 58. 42. 27. 20. 16. 16. 32.

824. 791, 740, 662. 507. 206. 170. 137. 108. 82. 62. 42. 32. 22. 17. 16. 30.

822. 792. 742. 661. 518. 207. 171. 138. 109. 82. 59. 43. 30. 23. 17. 14. 33.

824. 792. 739. 660. 505. 206. 170. 137. 107. 81. 59. 42. 30. 22. 17. |7. 33.

825. 791. 739. 657. 504. 243. 168. 134. 104. 76. 56. 37. 27. 19. 17. 19. 32.

824. 791. 737. 655. 503. 310. 164. 128. 98. 71. 48. 30. 19. 13. 14. 17. 32.

821. 792. 736. 654. 500. 333. 193. 131. 88. 59. 27. 22. 17. 12. 13. 19. 32.

824. 791. 737. 651. 500. 347. 235. 145. 94. 43. 29. 20. 16. 16. 14. 19. 32.

822. 791. 736. 647. 498. 356. 253. 143. 71. 52. 37. 30. 22. 19. 16. 16. 30.
824, 792. 736. 647. 497. 360. 259. 148. 73. 53. 39. 30. 23. 19. ]7. 16. 29.

824. 793. 736. 645. 497. 356. 253. 140. 71. 52. _9. 29. 23. 17. 14. 17. 30.
824. 791. 736. 647. 497. 347. 235. 140. 88. 37. 29. 22. 17. 12. 14. 17. 30.

824. 789. 734. 651. 498. 333. 189. 122. 89. 60. 32. 23. 17. 13. 12. 17. 30.

824. 792. 739. 652. 498. 307. 166. 130. 98. 71. 49. 29. 19. 13. 14. 19. 30.

825. 792. 740. 655. 500. 248. 168. IT2. 102. 78. 56. 39. 27. 19. 16. 19. 32.

824. 792. 743. 658. 505. 219. 170. i37. 107. 81. 60. 42. 30. 22. 17. 19. 33.

824. 792. 740. 661. 514. 207. 171. 140. 109. 82. 60. 45. 32. 22. 17. 16. 32.

822. 795. 742. 660. 507. 206. 17I. iT/. 107. 82. 60. 42. 30. 22. 17. 17. 35.
825. 791. 739. 658. 501. 232. 170. 137. 105. 78. 56. 40. 30. 19. 16. 19. 32.

824. 792. 737. 658. 500. 291. 167. 134. 99. 73. 52. 33. 23. 17. 14. 19. 32.

822. 791. 739. 651. 497. 323. 186. 125. 94. 63. 40. 22. 16. 12. 12. 17. 32.
822. 792. 737. 647. 497. 343. 216. 143. 92. 48. 27. 20. 16. 13. 13. 17. 32.

822. 792. 736. 647. 495. 351. 248. 145. 89. 49. 36. 29. 22. 16. 14. 16. 32.

825. 789. 737. 647. 494. 356. 259. 137. T3. 53. 42. 29. 23. 19. 17. 16. 32.

824. 789. 737. 645. 492. 354. 256. 132. 72. 53. 40. 29. 23. 19. 16. 16. 32.

B25. 791. 737. 644. 495. 350. 245. 138. 85. 46. 32. 22. 17. 16. 14. 19. 30.

822. 792. 736. 648. 497. 339. 210. 132. 84. 52. 29. 23. 17. 13. 13. 17. 30.
825. 791. 739. 651. 498. 315. 163. 128. 95. 68. 45. 24. 19. 13. 13. 19. 30.

MEST

LON6ITUDE

160.

155.
150.

145.

J40.

135.

130.

125.

120.

115.

110.
105.

100.

95.

90.

85.

80:

75.

70.

65.

60.

55.

50.

45.

40.

35.

30.

25.

20.

15.

10.

5.

O.
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COMMUNICATIONSI;ORiZONELEVATIONANGLE IS 45.0 DEGREES

ORBITALELEMENTS FOR THE ORBITERON 19990929.0000:

A= 6986.2 E=0.474362 I= 90.00 NODE=129.93 ARGP=153.27 MEANO= 0.00
START DATE: 20001116.0000 STOP DATE: 20001117.0260 TIME STEP IS O.OOlO DAYS

NUMDE_ OF MINUTES THAT THE SITE-ORBITERLINK IS AVAILALBEDURING THIS PERIOD TABULATEDBELOW:

EAST WEST

LONGITUDE LATITUDE LONGITUDE

-BO. -70. -60. -50. -40. -30. -20. -10. O. I0. 20. 30. 40. 50. 60. 70. 80.

O.

5,

I0.

15,

20.

25.

30.

35.

40,

45.

50.

55.

60.

65.

70.

75.

520. 441. 233. 134. 107. 75. 33. 26. 20. 14. 10. 9. 6. 4. 3. 3. 6.

521. 438. 219. 141. 112. 85. 58. 27. 22. 16. 12. 9. 6. 4. 3. 3. 6.

521. 438. 213. 144. liB. 92. 66. 45. 22. 16. 12, 7. 6, 3. 3. 3. 6.
524. 438. 204. 145. 121. 95. 72. 52. 33. 19. 9, 4. 3. O. 1. 1. 6.

520. 436. 215. 145. 120. 95. 73. 52. 36. 22. 7, 3. O. O. O, 1. 6,

521. 439. 209. 143. 117. 94. 68. 49. 26. 13. 9, 6. 4, 3. 3. 3. 4.

523. 439. 216. 140. 114. 86. 59. 30. 20. 14. 12. 9. 4, 4. 3. 3. 4,

520. 441. 220. 135. I07. 76. 42. 24. 17. 14. 10. 7. 4. 4. 3. 3. 4,
520. 439. 264. I28. 96. 59. 26. 20. 14. 10. 7, 6. 4. 3. 3, 3. 4.

521. 441. 279. 143. Bl. 27. 17. 12. 7. 3. O. O. O. O. 3. 3. 6.

520. 439. 288. 170. 53. I0. O. O. 0. O. O. O. O. O. O. I. 6.

523. 441. 289. 177. 19. 0. O. O. O. O. 0. O. O. O. 0, I. 6.

520. 439. 287. 147. 63. 23. 12. 4. O. O. O. O. O. O. 1. 1. 4.
520. 436. 275. 147. 86. 35. 24. 19. 13. 10. 7. 4. 3. 3. 3. 3. 6.

518. 436. 252. 134. 99. 66. 32. 24. 17. 14. 10. 7. 6. 4. 3. 3. 6.
521. 438. 220. 140. I09. 81. 50. 26. 20. 16. 12. 9. 6. 4. 3, 3. 7.

DO.- 520. 436. 215. 144. 114. 88. 62. 39. 22. 16. 12. 9. 6. 3. 3. 3. 7.

B5.

90.

95.

100.

105.

110.

115.

120.

125.

130.

135.

140.

145.

150.

155.

160.

165.
170.

175.

180.

185.

190.

195.

521. 436. 209. 147. 117. 94. 69. 50. 30. 14. 9. 6. 3. 3. 1, 1. 6.
518. 43B. 215. 145. 120. 94. 71. 50. 33. 20. 9. O. O. O. O. 1. 6.

518. 435. 206, 145. llB. 91. 68. 48. 30. 13. 9. 6. 3. 3. 1. 3. 6.

518. 436. 213. 143, 115. 86. 63, 39. 20. 14. I0, 7. 6. 3. 3. 3. 6,

520. 438. 219. 140. lOB. 79. 49. 24. 19. 14. 10. 7. 6. 3. 3. 3. 6.

520. 438. 255. 131. 99. 65. 29, 22. 16. 13. 9. 7. 6. 3, 3, 3, 7,

523, 439. 276. 138. 85. 30. 22. 14. i0. 7. 6. 4. 3. 3. 3. 3, 7.

520. 439, 2B7. 147. 65. 19. 7. O. O. O. O. O. O, O, O. 1. 7.
520. 442. 292. 179. 14. O. O. O. O. O. O. O. O. O. O. O. 9.

51B. 439. 287. 170. 50. 16. 0. 0. O. O. 0. O. O. O. O. 3. 7.

520. 441. 27g. 148. 78. 30. 20. 14. 10. 7. 4. 1. 3. 3. 3. 3. 7.

523. 441. 268. 130. 94. 58. 29. 22. 17, 12. 9. 7. 4. 3. 3. 3. 7.

520. 438. 223. IS7. 107. 75. 36. 26. 19. 16. 12. 9. 6. 4. 3. 3, 6,

520. 439. 219. 143. 114. 86. 58. 27, 22. 16. 12. 9. 6. 4. 3. 3. 6.

523. 436. 213. 145. i17. 91. 68. 46. 24. t4. 10. 7. 4. 3. 3. 3. 4,
521. 438. 215. 147. 120. 94. 71. 50. 35. 20. 9. 3. O. O. O. O. 6,

523. 438. 212. 147. liB. 94. 69. 50. 32. 19. 7. 4. 1. O. O, 1. 6.

523. 441. 210. 144. 115. 91. 66. 45. 20. 14. 10. 7. 6. 3. 1. 1. 7.

520. 439. 217. 141. 111, 84. 56. 26. 19. 14. 10. 7. 6. 4. 3. 3. 7.

360.

355.

350.

345.

340.

335.

330,

325.

320.

315.

310.

305.

300.

295.

290.

285.
280.

275.

270.

265.

260.

255.
250.

245.

240.

235.

230.

225.

220.

215.

210.

205.

200.

195.

190.

185.

521. 439, 23B. 135. 102. 72. 30. 23. 17. 13. I0. 7. 6. 4. 3. 3. 7. ' 180.

523. 439. 271. 128. 92. 50. 24. 17. 13. 9. 7. 6. 4. 3. 3. 3. 4. 175.

521. 439. 284. 148. 73. 24. 16. 9. 3, O. 0. O. O. O. 1. 1. 4. 170.

521. 442. 289. 177, 42. 0. O. O. O. O. O. 0. O. O. O. i. 4. 165.
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SOL #404 45 deg (contd)

E_ST

LONGITUDE

200.

205.

210.

215.

220.

225.

230.

235.

240.

245.

250,

255.

260.

265.

270.

275.

280.

285.

290.

295.

300.

305.

310,

315.

320.

325.

330.

335.

340.

345.

350.

355.

3_0.

LATITUDE

-80. -70. -60. -50. -40. -30. -20. -10. O. I0. 20. 30. 40. 50. 60. 70. 80,

521, 439. 291, 176. 29. O. O. O. O. O, O. O. O. O. O. 1. 6.
521. 442. 287. 153. 71. 26. 17. I0. 3. O. O. O. O. O. I. I. 4.

524. 442. 275. 143. 92. 46. 26. 19. 14. 12. 7. &. 4. 3. 3. 3, 4.

524. 442. 252. 134. 102. 71. 32. 24. 19. 13. 12. 9. 6. 4. 3. 3. 4.

523. 438. 223. 141. 111. 82. 56. 27. 20. 16. 12. 9. 6. 4. 3. 3. 4.

523. 439. 217. 144. lIB. 92. 66. 45. 22. 14. I0. 7. 6. 4. 3. 3. 4.

523. 439. 207, 147. 121. 94. 71. 50. 35. 17. 10. 6. 3. 1. I. 1, 4.

523. 439. 219. 147, 121. 95. 73. 52. 35, 20. i0. 1. O, O. O, I. 7.

520. 444. 209. 147. 120. 95. 69. 48. 30. 14. lO. 7. 3. 3. 1. 1. 6.

523, 441. 216. 144. 115. B8. 62. 37. 20. 14. I0. 7. 6. 4. 3. 3. 6.

524. 442, 223. 140. IOB. 7B. 4B. 24. 19, 14. I0. 7. 6. 4. 3. 3. 6.

521. 442. 264. 131. 98. 62. 29. 22. 14. 12. 9. 6. 4. 4. 3. 3. 6.
524. 442. 282. 145. B4. 30. 20. 14. 10. 6. 4. 3. 1. 1. 1. 1. 6.

521. 444. 291. 166. 59. 16. O. O. O. O. O. O. O. O. O. I. 4.

521. 442. 294. 181. 12. O. O. O. O. O. O. O. O. O. O. O. 3.

520. 441. 289. 163. 59. 19. 7. O. O. O. O. O. O. O. O. I. 4.

521. 442. 281. 14B. 85. 33. 23. 16. 12. 9. 6. 4. 3. ). 1, 1. 4.
523. 442. 262. 132. 9B. &3. 30. 23. 17. 13. 10. 7. 6. 4. 4. I. 4.

520. 439. 223. 141. lOB. 79. 4B. 26. 20. 14. 10. 7. 6. 4. 4. 1, 4.

521. 439. 220. 144. 115. 88. 62. 37. 22. 16. 12. 7. &. 4. 4. I. 4.

523. 439. 212. 147. 120. 94. 69. 49. 30. 16. 10. 7. 4. 1. 1. 1. 4.

521. 439. 219. 148. 121. 95. 72. 52. 36. 23, 10. 1. O. O. O. 1. 6.

521. 439. 204. 147. lIB. 95. 72. 50. 35. 16. 9. 6. 3. 1. 1. 1. 4.
521. 439. 216. 144. 115. 91. 66. 45. 20. 14. 10. 7. 4. 4. 3. I. 4.

520. 43B. 217. 141. 112. 84. 56. 26. 19. 14. 12. 7. 6. 4. 3. I. 4.

521. 439. 249. 135. 102. 71. 29. 22. 17. 13. 9. 7. 4. 4. 3. I. 4.

521, 441. 274. 134. 89. 46. 23. 17. 13, 9. 7. 4. 4. 3. 3. i. 4.

521. 439. 285. 150. 71. 22. 12. 3. 0. O. O. O. O. O. O. i. 4.

521, 441. 289. 177. 33. O. O. O. O. O. O. O. O. O. O, I. 6,

521. 439. 289. 177. 43. 9. O. O. O. O. O. O. O. O. O. I. 4.

521, 441. 285. 151. 75. 27. 19. 13. 7, 4. 3. O. O. I. I. I. 6.

520. 441, 268, 132. 92. 53. 27. 20. 16. 12. 9. 7. 6. 4. 3. 3. 6.

520. 441. 233. 134. 107. 75. 33. 26. 20. 14. I0, 9. 6. 4. 3. 3. 6.

WEST

LONGITUDE

160.

155.

150.

145.

140.

135.

130.

125.

120.

115.

110.

105.

100.

95.

90.

85.

80.

75.

70.

65.

60.

55.

50.

45.

40.

35.

30.

25.

20.

15.

10.

5.

O.

221





Session B, Submittal No. 4

Alan L. Friedlander

Science Applications International Corporation

223

PRECEDING PAGE BLANK NOT FILMED



O.
W

Z
0

rr
W
>-

U.

W
rr

OC
W
Ch

,<
..J

_C
OC
0

W

OC
W
a

<1:
..J

m

m<

U.

,<
J
,<

OC
<
=E

224



\
/ \

/ \
/

\

2,?._ -- L
,I w

/

TOP YlEN

• ii i iii - -

225
ORIGINAL PAGE IS

OF POOR QUALITY



_oRr..__ (_=-F_ __']

_A_-_ Sm,"L-_=N"

_'_. co_{,n_,_ 7,3

AmruI)¢ r._-r_. (,,4

FI_.a%-U,ANr .-r_,J=) Z,o

[_m PrO

_._.

?-0,0

l l=_,o

_-_S

i

226
ORIGINAL PAGE IS

OF POOR QUALITY



I
_.._,

1

IIImll IIII II1

'_1 f"

227





Session B, Submittal No. 5

Alan L. Friedlander
Science Applications International Corporation

229

PRECEDING PAGE BLANK NOT FILMED



(/)
LU

rr

l-
(n
0
0
>-
m

..J
m

IZI

El
0
rr
n
(/)
(/)
Iii
(J
0

(/)
!1
0
(n
m

U)
>-
..J

Z
<

rr
0

IJJ

(n
rr"

=E
.<
Z
m

(/)
rr
iii

Z
<(
.-I

.-I

..J

.<
=E
U)
rr"
0
LI.

rr"
LU
r_
Z
.<
rio

m

m.<

U.

Z
<
..J
.<

23O



N91-14363

ScienceAl_olications
InternationalCorlx>ration
,;,7 Empiovo(_ L'),_"_,';' i,_p,irlv

Witll addendum of
new results

December 6, 1989

MEMO TO:.

FROM:

SUBJECT:

Roger Bourke, EIS Team

Alan Friedlander, SAIC

Analysis of Success Probability/Cost Trades for Small Landers in a Mars Network

The premise to be tested in this analysis is whether cost economies may accrue by delivering more

landers designed to lower reliability of operation (compared to fewer landers of higher reliability)

to obtain a desired probability of achieving a given number of lander successes. Generally, the

application in mind is a network of penetrators, although the analysis may apply as well to other

small lander concepts or even to simple rovers. In previous MRSR studies, the approach taken Io

raise the probability of a successful mission (e.g. a rover or sample return objective) was to invoke

a dual launch policy utilizing identical flight systems. With this approach we found that a

substantial improvement in achieving at least one total mission success was gained for realistic

values of system element reliability, albeit at the expense of higher program cost and more complex

operations. However, in the case of a large number of small landers whose recurring cost of

production might be small compared to the development cost, a single spacecraft carrier may be

sufficient to deliver these landers to Mars within acceptable limitations of spacecraft injected mass

and launch vehicle performance capability. It seems reasonable to at least explore the question of

potential economies if such landers were purposely designed to lower values of reliability. What is

specifically meant by lower reliability, in this context is that, while fewer lander emplacements will

succeed, those that do succeed will accomplish the desired mission objectives. The underlying

assumption here is a certain degree of independence of lander system failure modes such that

objective-specific elements (science instruments and data communications) are highly reliable

while delivery-specific elements (e.g. deorbit propulsion and aeroshelB are less reliable and

developed at lower cost with attendant higher risk. This analysis leaves open the important

question as to whether such an approach is at all realistic in terms of engineering design, but

focuses instead on the first question of potential cost advantage.

The method of analvsis is based on a probabilistic model of lander success and a related

probabilistic model of project cost including the lander, spacecraft carrier, and integration, but not

launch or operations costs. Quantitative results are obtained in a normalized and parametric

fashion. Sensitivity to the assumed model parameters is also examined.

!515 tl/'oo(tfieio Roacl, Suite 350, Schaumour_, ilhnots 60173 312_ 330 2500
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Mission Success Model

Consider (n) landers each of which have the same level of reliability (p) for achieving individual

mission success. Assuming that the actual failure events of different landers are statistically

independent (even though the underlying failure modes for contributing components may be

related), then the probability that exactly (m) of these landers are successful is given by the

binomial distribution

P(m successes) = [ nt / (m! * (n- m)!)] * pm • (1- p)n-m (I)

where ! denotes the factorial operator and * denotes multiplication. Mission success also depends

on the reliability of the launch vehicle and the spacecraft carrier that delivers the landers to Mars.

To take these factors into account, we define P1 as the probability of a successful launch event and

Pc as the probability of a successful delivery event. Then, the overall probability P that at least m

(i. e. m or more) landers will be successful (for a single launch) is calculated by the expression

P = PIPc _i =m to n [ n!/(it * (n-i)!)] * pi, (1- p)n-i (2)

The relationships of Equation (2) are illustrated in Figure 1 for P1 = 0.94, Pc = 0.98, and p = 0.8.

.,, ....... /i

o l+/ /
; o.2 ........................... _q

m 0.1 -_.................

n. 0.0
1 2 3 4 5 6 7 8 9 10

Number of Landers (n)

Figure 1 Lander Success Probability P(n, m) for Lander Reliability p = 0.8
P! = 0.94, Pc=0.98
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Mission Cost Model

The lander system development cost is modeled in terms of design reliability by the relationship

Cd = Cdo / (I - p)a (3)

where Cdo is a "reference" development cost at p = 0, and the exponent (a) is a model parameter.

This equation is graphed in Figure 2 for values of a = 0.1, 0.2, and 0.301.

4.0
O

"O
o 3.5
"0
U
"" 3.0

0
o 2.5

c-
q) 2.0
E

_o 1.5
Q

Q
e_ 1.0

•o 0.5
c

.J
0.0

0.0

Cd/Cdo 1/(1- ))^a /
/ .

Nomlilal m), a = 0.301

.....17o
......... f JOl

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Individual Lander Reliability (p)

Figure 2 Lander Development Cost Model

0.9 1.0

The nominally selected value of the development cost parameter is a = 0.301 = logl0 2, which

gives a doubling of cost from p = 0 to p = 0.9 and doubling again for p = 0.99, etc. For a = 0.1

the increase in cost is only 25% for each additional 9 in reliability. The sensitivity to this pararneter

will be tested later. Recurring cost for each additional lander is assumed to be a constant fraction

of the development cost. Hence, the lander system cost model is represented by

LC = Cd (l+kl*n) = Cdo (1 + kl*n) / (1 - p)a (4)

where the nominal value of the constant is selected as kl = 0.2. Total project cost includes the

lander, carrier, and a cost element associated with hardware integration, management, and
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contingency. The carrier spacecraft cost is taken to be proportional to the reference lander cost

(development + recurring) at p = 0. Integration, management, and contingency is taken to be

proportional to the sum of the carrier cost and the reference lander cost. Hence, the total project

cost model is represented by

PC = LC + k2*Cdo (1+ kl*n) + k3*[LC + k2*Cdo (1+ kl*n)]

= Cdo (1+ kl*n) [1/(l-p) a + k2 (1 + k3) + k3] (5)

where the nominal parameters are a = 0.301, kl = 0.2, k2 = 0.667, and k3 = 0.4. The final step

in the cost model is to normalize LC and PC to their respective values LC* and PC* corresponding

to one lander (n = 1) and reliability p = 0.8684 evaluated at the nominal values of the cost model

parameters. Hence, LC* = 2.209 Cdo and PC* = 3.809 Cdo. Lander system relative cost and

total project relative cost are graphed in Figures 3 and 4 as a function of the number of landers and

the individual lander reliability.

Results

Solution of the mission success model (Equation 2) was obtained for a constant probability P = 0.8

that at least (m) landers will be successful. These calculations assume the nominal values of 0.94

for launch success and 0.98 for carrier success; these values yield the reference lander reliability of

p = 0.8684 for a single lander. Results are shown in Figure 5 which plots the required lander

reliability as a function of the number of landers (n) and the minimum number of lander successes

(m). The solution values for p are then used to evaluate the normalized total project cost which is

graphed in Figure 6. Note that for each value of (m) there is a number of landers (n > m) that

yields the lowest cost. Generally, (n) is greater than (m) by one or two lander units. This result

substantiates the initial contention that more landers of lower reliability may provide cost economy.

The intersection points along the minimum cost locus can be mapped into Figure 5 to detemaine the

lander reliability values; the range is p = {0.64, 0.87} as m varies from 1 to 8. For example, to

obtain at least six lander successess (m = 6) at a probability of 80%, the minimum relative cost is

PC/PC* = 2.084 (i.e. twice the single lander project cost) with n = 8 and p = 0.835. Note also

that the cost curve is fairly flat for n > 8, so that ifn = 10 the project cost increases to only 2.195

but the required lander reliability decreases to p = 0.711. By comparison, if n = m = 6, then the

required reliability is quite high at p = 0.977 and the project relative cost increases to 2.563. One

could also interpret the results for a constant cost as (m) varies. For example, if PC/PC* = 2.0 or

less, then for values of m = { 1, 2, 3, 4, 5 } the minimum necessary lander reliabilities are {0.18,

0.31, 0.42, 0.57, 0.74} at corresponding values of n = { 10, 10, 10, 9, 8}.
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Figure 3 Lander System Relative Cost
LC* = 2.209x Cdo (forn = l,p =0.8684)
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Similar types of solution data are presented in Figures 7 and 8 for a constant success probability of

P = 0.9. In this case, of course, the level of both cost and required reliability is raised to satisfy

the more demanding 90% success capability. For example, at m -- 6, the minimum relative cost is

PC/PC* = 2.327 obtained for n -- 9 and p = 0.866. If PC/PC* -- 2.0 or less, then for values of m

= {1, 2, 3, 4} the minimum necessary lander reliabilities are {0.31, 0.45, 0.61, 0.76} at

corresponding values of n - { 10, 10, 9, 8}.

Sensitivity to Model Parameters

Model parameters were varied, generally one at a time, to determine the sensitivity of the minimum

PC/PC* solution. These calculations were made for the case of m = 6 and P = 0.8 with PC* held

constant at its reference value 3.809 Cdo. Results are listed in Table 1.

Table 1

Sensitivity to Model Parameters for m = 6 and P = 0.8
(Parameters at Nominal Values Unless Otherwise Noted)

Varied Parameter n p PC/PC*

a _ O. 1 6 0.9768 1.611
0.2 7 0.9074 1.854
0.301 8 0.8351 2.084
0.4 9 0.7694 2.302

kl= O. 1 9 0.7694 1.441

0.2 8 0.8351 2.084
0.3 8 0.8351 2.725

k2 = 0.5 8 0.8351 1.925

0.667 8 0.8351 2.084
1.0 8 0.8351 2.402

k3= 0.2 8 0.8351 1.857

0.4 8 0.8351 2.084
0.6 8 0.8351 2.312

PI*Pc = 0.84 8 0.8910 2.240

0.9212 8 0.8351 2.084
1.00 8 0.8014 2.020

Pl*Pc = 0.84, a = 0.4

kl = 0.3, k2 = 1.0, k3 = 0.6

9 0.8338 4.127

PI*Pc = 1.0, kl = k2 = 0 9 0.7324 1.093
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Comparison of One and Two Launch Scenarios

Results presented so far have been for a single launch of (n) landers. Additional calculations were

made for two launches, but this required modification of the mission success and cost models. To

calculate the probability P for at least (m) lander successes with two launches, it is necessary to use

Equation (1) as the basic model for lander success, multiply each term by the product PI*Pc except

for the m = 0 term which is adjusted to [(1 - PI*Pc) + PI*Pc * Pm=o], and then obtain the various

combinations for exactly (m) successess with two launches. The probability for at least (m) lander

successes can then be calculated by summation of terms as in Equation (2). The project cost model

for two launches is taken as a modification of Equation (5)

PC(2)=Cdo {(1+ kl*n) [1/(1-p)a+k3 ] +2,k2 (1 + k3)*(l+ kl*n/2) } (6)

where (n) is the total number of landers for two launches.

Employing the nominal values of model parameters, the first comparison case examined is n = 4

and a constant probability P = 0.8 that at least (m) landers will be successful. The single launch

carries 4 landers while the dual launch system carries 2 landers each. Results for this case are

listed in Table 2.

Table 2

Comparison of One and Two Launches for n = 4 and P = 0.8

One Launch (n--4) Two Launches (n = 2+2)

At Least m Successes p PC/PC* p PC/PC*

1 0.3977 1.180 0.3675 1.417

2 0.6447 1.275 0.7747 1.615

3 0.8336 1.441 0.8951 1.806

4 0.9653 1.929 0.9854 2.561

Although the relative cost for two launches is always higher, if the criterion of comparison is the

minimum value of lander reliability (p), then the results indicate that two launches is better only for

the condition m = 1. If more than 2 lander successes is desired, a higher reliability is required

because of the influence of possible launch and carder failures.
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The second comparison case examined is n = 8 and a constant value of p = 0.8 for the reliability of

each lander. In this case we compare the mission success probability P(m) for m = 1 to 8. The

relative project costs are PC(1)/PC* = 2.018 and PC(2)/PC* = 2.263 for all values of (m).

Results are listed in Table 3.

Table 3

Comparison of One and Two Launches for n = 8 and p = 0.8

At Least m Successes
One Launch (n = 8)

P
Two Launches (n = 4+4)

P

1 0.9212 0.9936

2 0.9211 0.9898

3 0.9201 0.9665

4 0.9116 0.8992

5 0.8694 0.8008

6 0.7341 0.6763

7 0.4637 0.4271

8 0.1546 0.1424

These results indicate a "success performance" crossover point between one and two launches at

the value m = {3, 4}. That is, two launches are better as measured by probability of success only

for the condition m = 1, 2, or 3. If 4 or more lander successes is desired, then the single launch

policy yields a somewhat higher probability of that occurrence.
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Addendum to December 6, 1989, Memorandum

I did some more sensitivity studies relative to the cost model assumption. The results

still confirm the conjecture (generally) that more landers at lower reliability yield lower

project cost.

Basic Cost Model No.1

(as per memos)

Cd/C d
o (l-p)

Basic Cost Model No. 2

(modified "Bourke")

a

1
Cd/Cdo=(1 - p)

Cost Model

Results for m =6 and P(m _>6) =0.8

MinimumCost Solution

a n p PC/C d

No. 1 0.100 6 0.9768 6.136

0.301 8 0.8351 7.938

0.500 9 0.7693 9.561

1.000 13 0.5767 10.334

No. 2 0.100 6 0.9768 6.130

0.301 8 0.8351 7.703

0.500 10 0.7113 8.710

1.000 15 0.5110 9.513

Note: The greater the sensitivity (a), the more landers (n) desired.
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Combining Independent and "Common Cause" Failure Events

Consider (n) landers on a single launch. Each lander has an independent

reliability = Pi and a common cause (or bias) reliability component = Pd. Then, if Sm

represents the event of exactly m successes, the total conditional probability

formula is

where

P(Sm) = P(Sm/D)P(5) + P(Sm/D)P(D)

= event that common cause failure does not occur

D = event that common cause failure does occur

P(Sm/D) obtained from binomial distribution, as before

P(Sm/D) = _A "° for m=O

Lofor m>0

P(D) = Pd ; P(D) = 1 - Pd

Distribution between failure event types

P=PiPd =(1-fi)(1-fd) =l-f

Let

or

1 -Pd ;0<k d <1
kd =fd/f = _ _pi Pd

1 -k d

Pd= 1 -kd Pi
= 1 -k d (1 -p)

Special case: Pi =Pd = "_-

k d = (1 - -,_)/(1 - p)

p Pi = Pd kd

0.5 0.7071 0.5858

0.6 0.7746 0.5635

0.7 0.8367 0.5445

0.8 0.8944 0.5279

0.9 0.9487 0.5132
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Parametric Results For m = 6, p,= 0.94, po= 0.98, P = 0.8

k
d

0.2

Pc( Pi+Pd )n p, Pd pc---T using 2 for cost

6 0.9777 0.9945 2.861
7 0.9153 0.9793 2.368

E_ 0.8533 0.9646
9 0.7984 0.9520 2.355

10 0.7506 0.9413 2.433

0.5 6 0.9800 0.9804 2.650

[-_ 0.9336 0.9377
8 0.8965 0.9062 2.281
9 0.8716 0.8862 2.368

10 0.8576 0.8754 2.494

Pi -" Pd

0.5051

0.5167

0.5259
0.5314
0.5340

0.8

0.9

6 0.9800 0.9800 2.645

E_ 0.9350 0.9350 2.2_-7-4-i
8 0.9014 0.9014 2.281
9 0.8817 0.8817 2.377

10 0.8727 0.8727 2.515

6 0.9858 0.9463 2.368

0.9678 0.8859
8 0.9628 0.8705 2.352
9 0,9622 0.8687 2.526

10 0.9621 0.8684 2.705

6 0.9904 0.9205 2.243

171 0.9838 0.8728 122331
8 0.9832 0.8687 2.404
9 0.9832 0.8687 2.589

10 0.9832 0.8687 2.774
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MARS GLOBAL NETWORK MISSION WORKSHOP

ENTRY SYSTEM DESIGN CONSIDERATIONS

J. Gamble - NASA/Johnson Space Center

Introduction

This section addresses some of the design issues concerned

with the specific workshop question, "What is the best entry

system - fixed or deployed aeroshells; parachutes or direct

impact?" To address these questions some information about

the entry conditions in the Mars environment is required.

Results from the 90 day human exploration initiative study

were used as a reference point. The MRSR pre-phase A study

results were also considered. Finally some parametric data

was generated to specifically address the GNM entry design

question.

Reference

The 90 day study considered two flight systems each

consisting of an orbiter/carrier vehicle with six aeroshells

as shown in Figure i. Each aeroshell contains two penetrator

landers as shown in Figure 2 that use parachutes to extract

them from the aeroshell just prior to landing. The rigid

aeroshells are deployed from the carrier vehicle and spin

stabilized at 60 rpm. Small propulsion systems provide the

delta V required for the desired atmospheric entry

conditions. The aeroshells do not have an active guidance

and control system.

The aeroshell design incorporates a rigid conical aeroshell

with a spherical nose cap. The aeroshell diameter is 2.2 m

and has an entry mass of approximately II0 kg, yielding a

ballistic coefficient of 30 kg/m2. The aeroshell uses an

ablative heat shield.

Two of the six aeroshells are deployed 2-10 days prior to

Mars arrival in order to land at polar sites. The other four

aeroshells are deployed after capture into a 1/5 Sol Mars

orbit.

Mars Approach DeplQyed Aeroshells

One of the primary concerns in the MRSR study was the ability

to achieve the proper entry conditions during the Mars

approach. The entry corridor is bounded by the skip out and

maximum allowable g load boundaries as shown in figure 3.

Figure 4 shows the entry corridor limits versus L/D for an

entry velocity of 6 km/sec. The total corridor width is

summarized in figure 5 and shows that the corridor is nearly

independent of the ballistic coefficient. The ballistic
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coefficient determines whether the vehicle flies higher or

lower in the atmosphere during the early portion of the

entry. While the MRSR was concerned with aerocapture during

the approach phase, the results are also applicable to the

entry case. The estimated corridor width for ballistic

vehicles are shown on figure 5. For a maximum entry load of

5 g's, the total corridor width is less than one degree. The

corridor width increases to 3 and 5.5 for i0 and 15 g limits

respectively. The MRSR study concluded that a minimum

corridor width of approximately 3 degrees was required in

order to accommodate navigation and atmosphere uncertainties.

In order to achieve this accuracy, optical navigation was

baselined for the study and trajectory corrections were

considered within a few hours of entry.

GNM aeroshells deployed several days prior to entry and not

having an active guidance and control system will almost

certainly require much larger entry corridors than are

necessary for the MRSR. It is very possible that a minimum

corridor width of at least 5-10 degrees will be required.

Figure 6 shows some preliminary results for the aeroshell

defined by the 90 day study at an entry velocity of 6 km/sec

at 125 km altitude. The figure indicates that g loads in

excess of 20 g's will be required to provide a corridor width

of i0 degrees. Figure 7 shows that for a I0 degree corridor

width, downrange dispersions of +/- 2-5 degrees will occur

for nominal entry angles of 15-20 degrees. These results

were obtained from three degree-of-freedom simulations

entering in a polar plane.

One proposal for decreasing the landing footprint dispersions

is to enter at a much steeper entry angle. The results of

entering at -35 and -45 degrees are shown as a function of

ballistic coefficients in figure 8. The downrange dispersion

for 10 degrees change in entry angle is less than one degree

although it does increase as the ballistic coefficient

increases. One of the primary problems with the steep entry

angle is the large load factors that result. Figure 9 shows

the maximum g loads (Earth g's) resulting from entry at

-35 and -45 degrees. Load factors on the order of 40 - 60

g's result from these steep angles.

Deployable Aeroshell Considerations

Use of deployable aeroshell configurations will in general

preclude the use of ablator heat shields and the ballistic

coefficient will have to be small enough to limit the

aeroheating during entry. To achieve a ballistic coefficient

of i0 kg/m2 using the 90 day study mass of Ii0 kg would

require an aeroshell diameter of approximately 3.8 m while a

diameter of 8.5 m would be required to achieve a ballistic

coefficient of 2 kg/m2. It would appear that use of deployed

aeroshells of this size would have significant problems

operating at 40-60 g's during entry. For this reason it is
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questionable whether use of deployable aeroshells for entry

during Mars approach is a viable concept.

Mars Orbit Deploy@d AerQshells

The lower entry velocity for aeroshells deployed from Mars

orbit present much less of a problem than for those deployed

during approach. Figure i0 shows that entry corridors of 15

degrees are possible at less than I0 g maximum load.

Because the navigation is much better defined for the orbit

deployed aeroshell than for the approach deployed case, the

entry angle dispersions will be much less. Figure II

indicates that for entry angle dispersions of +/- 1 degree,

the dispersion in the downrange landing site will be well

within +/- 1 degree. Aerodynamic heating for the orbit entry

cases will also be much lower than for the approach deployed

aeroshells. It would appear that these advantages definitely

outweigh the delta V penalty associated with capturing the
aeroshells into Mars orbit.

Parachut_ Considerations

One of the primary concerns with use of parachutes for the

final surface delivery of the instrument packages is whether

acceptable deployment conditions can be achieved during the

aeroshell entry. The Viking program used supersonic deployed

parachutes which were required because of the uncertainty

in the Mars atmosphere. In general deployment of parachutes

up to around Mach 2 (approximately 500 m/sec at Mars) is

considered well within the state of the art. Figure 12 shows

the aeroshell velocity at 5 and i0 km altitude as a function

of entry angle for the 30 kg/m2 configuration with an entry

velocity of 3.6 km/sec at 125 km altitude. The aeroshell is

seen to be subsonic at both altitudes for the range of entry

angles shown. Figure 13 shows the variation of the aeroshell

velocity at i0 km altitude for various dispersions in the

atmosphere. The low density cool COSPAR atmosphere results

in barely supersonic conditions for the 30 kg/m2

configuration and even a severe 50% decrease in atmospheric

density only produces a Mach 2 case. Therefore use of

parachutes for landing of the payload should not present any

significant deployment problems.

The bibliography lists several references with some

applications to the Mars entry problem. A number of these

also have extensive bibliographies.
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Viking Entry Through Landing Sequence

MARS ORBIT I_
INSERTION

WEIGHT (Ib)

_DI_..'_ALL"HRg_R"._j S-SA,OOATA
2220

LANDER CAPSULE SEPARATION

_¢EORBIT
ENTRY _m

2060 800,000 ft_r

P_ARACHUTE 150 ft)

DEPLOYMENT

25,000 ft

AEROSHELL

1656 SEPARATION

./

141110

1269

_ TERMINAL

PROPULSION

3360 ft

ENTRY TO LANDING _.

5-10minut,,_ _ --
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CIRCULAR ORBIT

FREE FALL

BOUNDARY OF

4

3

RETRO FOR:

-3 deg: 200 m/s
-15 deg: 430 rn/s
-90 deg: 3000 m/s

1
ELLIPTIC ENTRY ,ORBITS

Deorbit manoeuvre from low circular orbit.
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NETWORK MISSION SCENARIO

• ___\£+_ q_i_!_
N• ,_I_/V.:¢',,,,,_ ____

AsYMPTOTE_.._DIREC'rlO-N--.--L....... .I... It & ,I7', i /1 i_,_,_i{_/

MAXIMUM SOUTHERN N[L_.__ ,

ARRIVAL HYPERBOLA

Location of entry points at Mars' atmosphere.

50. O0

40. O0

30. O0

20. O0

]0.00

O. DO

_EARTH _)

oHAX. _TAC. PT. HEATING

CE ERROR (km_

" l I I I I I

O. CO 5. Oo l o. oo 15. oo 20. O0 2s. oo 30. O0

(W/cm2}

--GAMMA (clogr-= _ =)

Rn=J. 25m Rb=l. 55m CONE ANGLE=6D ° M=BOOk 9

Ballistic entry from hyperbolic arrival (performance for different entry angles).
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50. O

TIHE

GAMMA----15 Rn ='l. 25m

NETWO£K MISSION SCENARIO

100. 0 150. 0 200. 0

FROM lOOkm (SEC}

Rb=1. SSm CONE ANGLE-60

25 n. 0

M-3OOk S

20. O0
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Ballistic ent_ from h_tperbolic arrival (trajectory parameters).
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From Fluid Gravity
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30. O0

Ballistic entry from hyperbolic arrival (parachute deployment altitude).
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Global Network Workshop

Primary Question:

What are the desired and achievable accuracies for targeting the landing sites?

Subsidiary Questions:

What are the navigation (knowledge) uncertainties at the time of aeroshell f'Lr'ings?

What are the landing (guidance) dispersions of the penetrators?

What contributes to the errors in knowledge and targeting accuracy?

How can the errors be reduced?

For the approach targeted aeroshells, what are the errors as a function of the deployment

time?

Does onboard nav help and how much?

What is the dispersion clue to passage of the aeroshell through the atmosphere?

Due to the time on the parachute?

Due to the error introduced by the small rocket firing?

Does Viking experience help in estimating the targeting accuracies?

What is the effect on the trajectory of the despin from 60 to 15 rpm following the targeting

firing?

What is the effect of changing the assumptions or parameter values (e.g., flight path angle,

ballistic coefficient, etc.)?
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A GNM Mission and System Design Proposal

A Position Paper in Response to the Session B of the
Mars Global Network Workshop, Feb 6-7, 1990

Introduction

After having attended the Mars Global Network Mission (GNM) Workshop, and
upon some reflection, I have put together a mission and system design option
for the GNM which I believe is complementary to the 2001 Sample Return
Mission (SRM). In this paper I take an advocacy position for the proposed
mission; it is not intended to be an objective review, although both pros and

cons are presented in summary. This work represents my own opinions and
judgements, and is not an SRM policy statement, nor is it supported by any
systematic analysis. These ideas are an expansion and elaboration of the
design proposed by AI Friedlander of SAIC in the Session B discussion of the

GNM workshop.

In arriving at the proposed design I used the following criteria, in order of
priority, for evaluation:

I) Maximize Science Value
2) Keep Costs Low
3) Maximize Heritage (both from previous missions and heritage to be

provided to future exploration missions, particularly the SRM)
4) Design to fly in the earliest possible opportunity
5) Make it "Innovative"

The Elements of the proposed mission are:

1) Aeroshelled Landers
2) Communication Orbiter(s)

Mission Scenario

The mission consists of launches from earth in the '96, '98, and '01

opportunities on Delta-class launch vehicles (-1000 Kg injected to Mars in 8 to
10 ft diameter shroud). The trans Mars boost stage injects a stack of small

independent, aeroshelled spacecraft. The stack separates from the boost stage
and each rigid (as opposed to deployable) aeroshell flies to Mars on its own,
performing midcourse maneuvers as necessary. On-board GN&C systems

provide precision pointing (via torque wheels) and burn execution. Each
spacecraft flies a unique trajectory which is targeted to achieve approach
atmospheric interface at the desired latitude and lighting conditions; arrival

times may vary by a month or more. A direct entry is performed, there is no
propulsive orbit capture. The aeroshelled rough-landers are targeted to
achieve a desired attitude and entry flight path angle, and then follow a
passive ballistic trajectory until terminal descent. Based on sensed
acceleration (integrated to deduce altitude), the aft aeroshell skirt is jettisoned,
a short time later a supersonic parachute is deployed. The ballistic coefficient

GNM Mission and System Design Proposal Feb 16, 1990
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of the parachute is sized to achieve terminal velocity at about 8 Kin. ttowever
the parachute is not deployed until a few Km above the surface to minimize
wind-induced drift. This relatively short period on the parachute is possible
because of the low ballistic coefficient of the aeroshell, and allows surface

sites up to 6 Km above the mean surface level to be visited. The nose cap
(weighted by the no longer required torque wheel assembly) is jettisoned and
descent imaging begins, a laser altimeter also measures true altitude.
(Depending on what altitude descent imaging is first required, the nose cap
may be jettisoned prior to the aeroshell skirt jettison.) Based on range and
range rate to the surface, the parachute is jettisoned and the lander uses
descent engines to achieve touchdown velocity. (Note: if the ballistic
coefficient of the aeroshell is sufficiently low, a parachute is not required, the
ballistic terminal velocity provided by the aeroshell would be low enough that

a propulsive descent could be performed directly). A contact sensor shuts
down the motors to avoid cratering, and the lander rough-lands at less than 5
m/see. The remaining aeroshell and a deployable bladder attenuate landing
loads and minimize the possibility of tip over. Science instruments are
deployed and activated, and the network is established.

See the appendix of figures which illustrate the mission and spacecraft
designs.

Shared Communications Infrastructure

In this scenario, the communications relay orbiter(s) are provided as
infrastructure for both the GNM and the SRM. In the reference GNM and SRM

scenarios, each mission provides its own communications system. These
systems are a part of the carriers which are captured into deployment and (in
the case of the SRM) retrieval orbits; these orbits are not the preferred ones
from a communications standpoint, and may in fact be far from optimum.
Because of the successive nature of these missions, commonality between the

communications system requirements should be explored. Because of the
stated commitment to planetary exploration, consideration should include the

use of this system to backup or augment future, higher capability Mars
communications systems.

Deployment from the Trans Mars Boost Stage Contrasted to the
Reference GNM Mission Scenario

Another key feature of this design proposal is the lack of a centralized carrier

vehicle which propulsively captures into Mars orbit and performs deployment
of landers from that orbit. In the proposed approach, the aeroshells are
separated for the boost structure via a simple sequencer. They then become
independent spacecraft, each targeted and tracked on a unique trajectory.

In contrast, the reference GNM mission designs involve a combination of
deployment from orbit and deployment on approach.

Although an orbit design exists which satisfies lighting conditions over a wide
range of latitudes, including polar (re, "A Polar Orbit Mission for the Mars
Global Network Mission", Philip Knoeke, JPL), it comes at some expense. The
1/5 sol polar orbit requires a higher capture Deha-V than a more elliptic orbit.
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A 160 day wait (h_r the 1998 launch opportunity) is also required to achieve
Ihc correct orbital conditions bcforc entry vehiclc deployment may begin.

The opportunity available then sweeps from the south pole to the north over a
180 day period thus to get full latitude coverage and emplace the full network

would take almost a year from the time of arrival at Mars.

The carrier deployment strategies discussed in the workshop considered the

deployment of aerosheils with no active GN&C system. In this scenario, the
carrier would provide pre-deployment pointing and would deploy the
aeroshell in such a way that tip off rates were negligible; the aeroshell would

then simply execute a fixed delta-V burn. This "point-and-shoot" strategy for
aeroshell deployment on approach variety has the virtue of simplicity, but at

the expense of landing accuracy (especially for low entry flight path angles).
Of course this accuracy can be improved by putting a GN&C system on the
aeroshell. Also execution accuracy for approach can be improved by a

combination of steep entry flight path angle and simply delaying approach
deployment until the last "minute" (2 days outs, 1 day out, hours...?). Waiting

however, incurs .a Deha-V penalty.

The design choice of putting an on-board GN&C system then leads one to the
scenario proposed here. That is to deploy aeroshells on approach, but that

deployment may begin immediately after the Trans Mars Injection (TMI) burn.
In this way the aeroshells are independently guided to entry interface from
post TMI separation from the boost stage. Since the aeroshells all perform

direct entry they are all of the same design (ie. there are no disparities

between having to design both orbital deployed and approach deployed
aeroshelis).
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The Development of a Spacecraft Bus

Whether or not an existing bus such as the Mars Observer bus can be used,

there is significant development, integration, testing and certification to go
through prior to launch. A closer look is warranted to compare the costs of
developing a large central bus with separate aeroshells as contrasted to
developing a simple aeroshell deployment mechanism and many small,
independent spacecraft. The development of many smaller and simpler
appears to have great potential to lower the overall costs of the GNM mission,

and may help moderate costs for the following sample return mission by
providing valuable infrastucture and heritage for the SRM program.

This leverage would be provided by the design of a single small aeroshelled
lander which could have broader application than the currently proposed

penetrator concept. Once a kick stage has provided the necessary trans-Mars
Delta-V, only attitude maintenance and periodic midcourse corrections up to
the point of entry interface are required for the proposed spacecraft. The
GN&C heritage to solving this problem is vast, and an off-the-shelf solution
requiring little more than integration is possible, given the current trend
towards miniature satellites. A spacecraft required to do orbital insertion and
orbital deployment is in my opinion an unnecessary complication. Each

aeroshell would simply maintain course and attitude until entry interface, and
from there follow a passive ballistic trajectory (no aeromaneuvering) up to
terminal descent.

Mission Strategy

There is a possibility that a vigorous, aggressive development schedule could
produce a '96 launch. This is possible because of the strong heritage that exists
from previous and current engineering and development efforts. In any case,
the science objectives and program enhancing opportunities available from
this proposal argue for launch in multiple opportunities. For instance, if the

scheduled launch dates were in successive years (say '96, '98, and '01), a unique
strategy for mission reliability exists. If a first attempt at an attractive site
fails, PLAN on trying again later instead of sacrificing global placement for a

strategy of sending two landers to every site in order to achieve redundancy.
Or, if every thing works on the first try and the network is satisfactorily
established stop, you're finished, no extra launch or set of launches is
required.
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The Advantage of Smaller Independent Spacecraft

The idea of simple independent carriers has a number of other advantages:

1) It allows smaller, simpler launch vehicles like the Delta or Atlas to be
used (while still allowing the launch of a GREATER number of landers
from a Titan IV than currently planned), which translates both into
costs savings for the agency and much greater launch flexibility.

2) The mission is adaptable at modest cost. The global network can be
sustained, added to, or evolved incrementally as questions arise,

objectives evolve, and instrumentation improves.

3) The payload bay is reconfigurable (more so as compared to a penetrator
fore/aft body design). The science equipment bay on the proposed
lander is reconfigurable to accommodate 20 Kg of science instruments
specific to latitudes or science objectives.

4) The design is reusable and provides heritage to the SRM. There may be

tremendous design leverage to be found in the SRM if the sites selected
for the SRM can be visited by simple landers (either carried piggy back
and deployed on approach or launched separately), that provide exact
terrain knowledge at the site and establish navigation aids that lead the
lander to a landing area verified to=be safe per lander design. Using GNM

heritage, this could be done at a fraction of the cost of a comparable
imaging orbiter mission. The Human Exploration Vehicies could use
these "throwaway" landers in a :similar fashion, and to conduct Specific
surface experiments related to Site selection.

5) The design may be suitable for micro-rover ("Ant") deployment.

6) The aeroshells may be placed :with':relatively high accuracy by
employing radiometric approach navigation via the communications

orbiter(s). This would provide a flight demonstration for this navigation
technique for the SRM while enhancing the GNM. A high factor of

safety for the GNM is retained since earth based navigation would
probably be the primary method.

7) Engineering heritage for future possible missions. A modified aeroshell
bus (without the aeroshell skirt) could be used as a flying testbed for

various LfD configurations by modifying the aft aeroshell skirt. The
testbed could be used to evaluate various GN&C algorithms and would as a

bonus extend our operational understanding of the variabilities of the
Martian atmosphere. This kind of testbed may the the most cost effective

method of getting operational aerocapture experience at Mars. The
aeroshell bus will also fit inside very small launchers such as the Orbital
Sciences Pegasus or Taurus, or the General Dynamics Atlas-E. A
deployable aeroshell skirt could be developed (which could have a much
lower achievable ballistic coefficient), with a modified bus used in flight

test and operations. This has the additional advantage of sending a large
number of probes through the martian atmosphere thus building the
engineering knowledge database of Mars atmospheric flight prior to
launch of a Human exploration mission.
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T e c h n o I o g y

I believe this proposal can be accomplished with minimal technology risk.
This may not qualify it as "technologically innovative", but I see no need to
invent technology where it obstructs timely, cost effective execution of the
mission. The possibility of pressing for a '96 launch should be investigated.
However, for serious consideration of a '96 launch, funding for concept studies
needs to be provided now.

For the mission proposed here, the program risk that I believe exists for early
launch of high G designs is mitigated. This is a simple mission, with a single
simple spacecraft to design (excluding the comm orbiter which has even

greater heritage working for it). I am sure that no show stoppers exist for
penetrators, but there seem to be significant development costs and schedule
risks associated with them. The fact is that none of the instruments, with rare

exception, have been developed and tested for the very high G environments,
and I am not aware that INTEGRATION of this number and variety of high G
instruments has ever before been attempted (CRAF penetrator is the nearest
data point that I am aware of, but the G loads there are considerably lower than
those considered for the Mars penetrators, especially the aft body G loads). The
combination of designing for the intense thermal flux, radiation, and G load
environments, have probably not been predominate considerations for the
majority of past high G development programs.

In this proposal, the strategy was to provide a relatively generous 20 Kg
science payload capability with an ample 10 watt constant power supply
augmented with rechargeable batteries. Several types of science payloads can

be envisioned, each tailored of objectives which vary with latitude and the
required number of a particular experiment type. As far as satisfying the
requirements which lead to penetrator designs (subsurface sampling,
placement of seismic geophones) a number of proposals emerged in the
Session B workshop for satisfying these requirements. For instance a flexible,
cable driven drill for acquiring subsurface regolith samples to a depth of up to

3 meters should be quite possible to incorporate into one such payload type.
Geophones may be placed away from the lander on teathers to reduce the
chance of interference, or they may be driven into the surface with a
pyrotechnic device. I believe that the consensus at the meeting was clearly

that engineering solutions could be found to satisfy science objectives,
whether the surface device was a soft, rough, or hard lander. For the proposed
rough lander design, risk and cost are mitigated by the using current
expertise in developing, integrating, and testing moderate G instruments (10's
of G's instead of 100's or 1000's).
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Mass Guess-timales

Subsystem or Component

Science Payload (including atmosphere profiling)

Structure (primary and secondary)

Power

RTG's (2)__
Batteries

Communications
]1 I

GN&C/Propulsion
---Avionics 10

10---Torque Wheel Assembly
---Attitude Control System (S.pin/Despin) and RCS Hardware
---Tanks & Fuel

Mass

(Kg)

20

45

5

5

10

Parachute Assembly

10

35

Thermal Protection 30

Thermal Control 5

15

Miscellaneous

Total 2O5

Notes:

1) This breakdown was used to get a rough estimate of the total mass. The

numbers here represent only an educated guess, actual mass may vary,
perhaps significantly, from these based on a detailed requirements
analysis of the Global Network mission, and a comprehensive mass
assessment.

2) For an aeroshell diameter of 2.44 m (8 ft) the ballistic coefficient would be

about 44 Kg/m^2, for a diameter of 3.05 m (10 ft), all other things being
equal, the ballistic coefficient is about 28 Kg/m^2. Lower ballistic
coefficient translates into higher entry G-loads and heating rates, but

also into steeper achievable entry flight angles which improve landing
accuracy and provide the ability to achieve higher (polar) latitudes;
lower ballistic coefficient also means lower mach numbers, or subsonic

conditions, at parachute deployment. Exactly what latitudes are
achievable should be the subject of future study.

3) Usable payload volume is about 50 cubic centimeters (1.8 cubic feet).
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Challenges...

This proposed design is certainly not without technical and programmatic
challenge. I encourage others to critique this proposal, but some difficulties I

can see with the design are:

1 ) Navigating a fleet of vehicles to Mars simultaneously. This may saturate
an already oversubscribed DSN. An integrated DSN upgrade or an
alternate communications and navigation approach or system may have

to be pursued.

2) A systematic injected mass study may show that some of my estimates are
significantly in error. For instance, a stellar sensor such as the Ball CS-
203 is required to provide inertial attitude reference, but even the CS-203
at 5.5 Kg, 6 watts, and 9 arcsec accuracy is not as small or precise as

desired; a lightweight, low power Canopus tracker is assumed to be
available. A total target weight of less than 200 Kg is attractive, I believe
that lower weight (and thus lower ballistic coefficient, higher
achievable latitudes, and higher landing accuracy) is attainable given
the current trend towards micro-spacecraft. In any case, using off the
shelf miniaturized components and technology is key to the success of

the proposed design approach. (Is this technologically innovative?)

3) Science objectives best accomplished from orbit will require another
orbiter (Son of Mars Observer2), or perhaps science payloads could be
piggy backed on the (separate) communications orbiter.

4) Establishing a shared communications infrastructure may be a

challenge. The communications and operations requirements of the
missions need to be analysed together to determine what the best
approach is to solving both problems. The placement of GNM landers at
the poles, for instance implies the need for highly inclined relay orbits,
while a sample return operation may best be satisfied with an

aerosynchronous relay orbit.

5) Achieving the desired (steep) entry flight path angles from approach

velocity may be problematic. Heating rates and total heat load are of
special concern. The proposed approach would rely heavily on the
heritage of Shuttle, AFE, and the High Energy Aerobrake work currently
underway for Thermal protection materials, heat resistant substructure,

and insulation materials and techniques.

6) Mission planning to achieve the desired distribution of landers at
preselected longitudes and latitudes at the proper lighting conditions for

descent imaging may be constrained by orbital mechanics and the
launch dates, combined with the achievable entry flight path angles

(function of ballistic coefficient, G loads, heating - requires further
analysis). It may be necessary to relax the lighting condition
requirement for descent imaging for some of the sites.

7) Achieving a '96 launch date would require an immediate commitment to
GNM concept studies, and an innovative approach to contracting,
developing, managing, and administering the program.
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Conclusions

An approach such as the one proposed by AI Friedlander, which I have
elaborated on here, has great promise in terms of reduction of cost and risk,

increased flexibility, heritage and commonality, and I believe can reap
substantial political dividends as well. However, a system engineering and cost
estimation effort is needed to ascertain what the payoff of such a proposal
might be. For a serious investigation of the possibility of a '96 launch of any
description, it is imperative that funding of these important concept studies be
swiftly provided.

While there is much refinement and analysis needed for this proposal, it has
attributes which I hope will receive serious attention. My hope is that this and
other proposals can generate the kind of discussions which will lead to a well
balanced Robotic Exploration Program and Human Exploration Initiative.

I ask the readers of this proposal who have become hardened by the decade
long neglect of planetary exploration to try to suspend doubt in a sustained
exploration program. Consider the GNM in a broader context of planetary

exploration that has a new commitment behind it. If there is significant gold
to be found in getting science value and the taxpayers money's worth in this
program, it is in looking beyond the event horizon of the next mission.

I believe the GNM work shop was very productive and I look forward to future
discussion of this and other promising mission and system design options for
the Robotic Exploration Program.
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Sandla Natlonal Laboratories

Telemetry Department

High Shock Penetrator Instrumentation Program

D. E. Ryerson
Division 5144

February 2, 1990

Sandia National Laboratories Telemetry Department has been building high shock

instrumentation systems for penetration studies for over twenty years. The

instrumentation systems are digital stored data acquisition systems used to

gather data during the penetration event and then recovered for data readout.

The systems are powered by batteries, which are presently Eagle Picher LTC-7PST

thionyl chloride batteries.

The shock loads that these systems are designed for are:

20,000 g for i millisecond

8,000 g for i0 milliseconds

3,000 g for 20 milliseconds
1,000 g for 50 milliseconds

Sandia has been fielding an average of sixty instrumented penetrator tests per

year for the last five years. Attached is a plot of a sample penetrator test
acceleration record.

To make our electronics survive high shock, we constrain all of the components

very tightly in the penetrator package. We use selected components and

encapsulate them in hard potting per the attached "Rules for Building High-g

Electronics." Our temperature environment is typically between 0 and 50

degrees Celsius, so we can use components that would not survive standard

military temperature ranges.

We normally try not to use shock attenuation to protect the electronic

components. An analysis of shock attenuation is given on an attached page.

shows that to get shock attenuation, one must let electronics move a much

larger distance than the penetrator housing, which is impossible.

It

We have used material to remove high frequency components of a shock pulse to

protect such devices as accelerometers which can be broken by high-amplitude

high-frequency inputs. The disadvantage of this shock material is that it may

distort the accelerometer response and in certain cases, actually amplify

certain frequencies of the shock pulse. In our work, we stay away from shock

attenuators if at all possible.

380



Z
0
m

Z
111

m

381



Sample Penetrator Test
Axial Acceleration

Analog LPF: 4800 Hz
Digital LPF: none
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RULES FOR BUILDING HIGH-G ELECTRONICS

D. E. Ryerson
Sandia National Laboratories

Division 5144

February 2, 1990

i,

,

,

.

.

.

,

,

,

I0.

Ii.

Constrain the PC Boards and Components in Hard Potting - Hard potting is

required to keep components from moving during shock. Typical potting

is epoxy filled with glass micro-balloons. Make sure electronics and

potting material are compatible with temperature ranges that the system

will see in curing of potting and system operation.

Cover the Components with a Thin layer of Soft Potting - Soft potting

protects components during the hard potting curing process. It also
gives a slight cushion to the component. Typical potting used is

polysulfide rubber. Some silicone-type materials will not work because

they act like mold release and will not let the hard potting adhere to
the boards.

Use as Small a PC Board as Possible The smaller a board is the less

likely it is going to flex and break.

Mount Small Components such as Resistors and Diodes Away from PC Board -
Small components can be broken by a board which flexes, especially if

the board has raised solder mounds or lands under the component.

Mount Shims Between Integrated Circuits and PC Boards - Potting will

typically not flow under an IC and a void will be left. Voids or air

pockets allow components to move and break.

Interconnect PC Boards with Fixed Wires or Spring Sockets and Beryllium

Wire - Normal connectors are prone to break.

Use Plastic Integrated Circuits - Plastic integrated circuits have the

wires running from the IC pins to the die encapsulated. Ceramic IC's

leave a cavity for the wires and die. The small wires will often move

and short out during shock in a ceramic IC.

Do Not Use Large Electrolytic Capacitors - Use Only Ceramic Capacitors -

Many large electrolytic capacitors cannot take shock. Solid
electrolytic capacitors such as Kemet parts may work. Avoid large

capacitors if possible. If that cannot be done, test components under

shock to determine survivability.

Use Small Known High-Shock Batteries Large batteries typically have

internal construction which will not survive shock. Test battery types

under shock to determine survivability.

Do Not Overcharge Batteries - When batteries are overcharged or charged

too fast, they will expand and crack the case or potting which holds the
cells.

Keep Power Consumption Low - Keep the system power consumption low to
keep battery size down.

Preload Package when Mounting in Hardware

Present Major Shock Perpendicular to PC Board Instead of Along Board
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Shock Attenuation

D. E. Ryerson
Sandia National Laboratories

Division 5144

February 2, 1990

The purpose of a shock attenuator is to reduce the amplitude of a deceleration

pulse. Assume a deceleration pulse of constant amplitude A for time T.

Calculate the motion parameters as follows:

acceleration - a = A for time T

velocity - v - -V o + I a dt - -V o + A t , 0 < t < T

V o - A T to force v - 0 at t - T

v - A (t - T) , 0 < t < T

depth - d - -_ v dt - -A (i/z t2 - T t) , 0 < t < T

d - i/2 A T2 , t = T

A shock attenuator would reduce the deceleration by slowing the body over a

longer time interval. Let's calculate the energy in the shock pulse and hold it
constant as follows:

energy - E - force * distance - mass * acceleration * distance

E - m A I/2 A T2 m 1/2 m (A T) 2

let Ez - EI -> A2 T2 - A I T I

since d - I/z A T 2 and (A z T2) 2 - (A I TI) 2

=> 1 A2 d2 = AI dl 1

Therefore, the time of the deceleration pulse is inversely proportional to the

amplitude of the pulse to keep the energy in the pulse constant and the depth of

penetration is also inversely proportional to the deceleration amplitude.

Summary

A shock attenuator must allow the device being decelerated to travel over a

longer distance to get any shock attenuation. If the device is being stopped in

centimeters, it may be possible to double the stop distance to halve the

deceleration. If the device is being stopped in meters, it probably is not

possible to double this stop distance.

In penetrator work at Sandia, we have found that shock attenuators do not work to

protect our electronics. We have found that in some cases an elastic medium has

been useful in removing the high frequency components or fast rise times of the

deceleration pulse. If one is not careful, it is possible that such elastic

media will become shock amplifiers at certain frequencies (resonances) rather
than shock attenuators.
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David E. Ryerson

Supervisor of Telemetry Technology Development Division 5144 at Sandia

National Laboratories, Albuquerque, New Mexico.

BS in Electrical Engineering, lowa State University, 1965.

MS in Electrical Engineering, University of New Mexico, 1967.

Worked at Sandia from 1965 to the present in telemetry, data acquisition, and

control systems. Designed real-tlme aircraft computer-controlled systems for

target tracking and rocket-launch computer systems for Sandia's Kauai test

range. Developed long-llfe (i to 3 years) ocean-floor seismic systems and

underwater acoustic telemetry for data recovery. Presently directing the

designing and fielding of ultra-hlgh shock (up to 20,000 times gravity)

penetrator data acquisitions systems, rocket and reentry vehicle

instrumentation, and specialized data acquisition systems.
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SPECIAL APPLICATIONS LOW-POWER RTG

D_ PROGRAM S[]_%_Y

A. Background

The Special Applications RTG Development Program was initiated at Teledyne

Energy Systems (TES) in September 1983 under DOE Contract DE-ACOI-83NE32115.

The development effort was performed under this contract through September 1988.

After this time the program was continued as the Two-Watt Special Applications

RTG Program (DOE Contract DE-AC01-88NE32142) with the objective of fueling a

prototype RTG unit. Present activities at TES include fabrication, assembly and

test of the electrically-heated prototype RTG which will be delivered to

EG&G/Mound in June 1990 for fueling in December 1990.

Development of a sealed, 3-1ayer fuel capsule for use in the Two-Watt RTG

is being performed for DOE in a joint effort by TES, EG&G/Mound and LANL. The

capsule design is based on an upsizing of the Milliwatt RTG and Navy One-Half

Watt RTG terrestrial 3-1ayer capsule technology.

B. Introduction

The primary objectives of the Special Applications RTG Development Program

are to:

(i) develop a low-power (2 to 5W) relatively high voltage (5 to 12V)

thermoelectric module using proven PbTe/TAGS thermoelectric

materials. This materials technology has been applied to both NASA

SNAP-19 space RTGs (Pioneer I0 and ii Jupiter Fly-by spacecraft and

Viking 1 and 2 Mars Landers), and terrestrial RTGs delivered to DOE
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for subsea applications. Demonstrated thermoelectric module

technology for low-power terrestrial RTGs at the initiation of the

development program was limited to bismuth telluride with a typical

RTG system efficiency of 3.5 to 4.0%. The goal for the development

program was to increase this efficiency by 50%.

(2) develop a sealed heat source intended for terrestrial applications to

contain the helitrn gas generated by the Pu-238 fuel decay. Available

RTG heat source technologies for the anticipated thermal inventory

requirement were all vented designs which result in increased

parasitic heat losses with operating time due to the introduction of

helit_n into the thermal insulation. The goal was to contain this

helium within the capsule.

(3) design, fabricate, assemble, fuel and test a prototype terrestrial

RTG system to demonstrate the developed technology. The selected

terrestrial RTG design would consider potential near-term

applications of low-power RTGs.

Although the hardware development for the Special Applications RTG has been

oriented towards terrestrial applications, the thermoelectric module technology

is generic and may be adapted to both space and terrestrial missions which

require a low-power RTG power source. The radioisotopic heat source for space

applications can be selected from available, qualified space hardware (such as

the GPHS technology) or possibly be specifically designed and qualified for the

mission requirements.
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C. Thermoelectric Module Techno!ogyDescription

The Special Applications thermoelectric module has evolved during the

development program from using a couple with an all-PbTe N-leg and TAGS P-leg to

one with Bi2Te 3 cold segments on both the N and P-legs. The Bi2Te 3 cold

segments were added to the latest generation of thermoelectric modules to

enhance the thermoelectric conversion efficiency for terrestrial applications

where the RTG would be exposed directly to the cold subsea environment. These

cold segments would not be beneficial for space applications and would not be

included in the thermoelectric couple design.

i. Vie_graph i

Viewgraph 1 shows Special Applications PbTe/TAGS minicouples which

exemplify a configuration which could be considered for space application. The

couple design is basically a miniaturization of the proven SNAP-19 space RTG

thermoelectric technology. The couple has iron hot and cold shoes and copper

pins to provide for electrically interconnecting the couples within a module.

The Special Applications module uses a printed circuit board at the cold side to

complete the interconnects between the couples. For the couple shown the

individual legs are 0.102 in. sq. by 0.625 Ig.

2. Viewgraph 2

Viewgraph 2 shows the typical internal construction of a Special

Applications RTG. The configuration shown is that for the subsea prototype RTG
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now being fabricated at TES. The 30-pound weight shown is almost all in the

BeCu pressure housing, with less than 5 pounds attributable to the RTG internal

components (thermoelectric module, heat source, heat distribution cup, thermal

insulation and preload springs). For a space RTG configuration, particularly

for a penetrator mission with high shock loading, the internal configuration

would probably vary somewhat from that shown to satisfy mission vibration/shock

requirements. For example, the heat source could have a support system

independent of the thermoelectric module to minimize dynamic loads on the

module.

3. View_Ira_h 3

Viewgraph 3 shows a typical Special Applications thermoelectric module

containing 68 couples. The module is approximately 3 inches in diameter by 0.8

inch thick. The cold side printed circuit board provides the basic structure

for the module. Powdered Min-K thermal insulation is vacuum-impregnated between

the couples to minimize heat loss. A thermoelectric module similar to that

shown has been successfully tested to a 100g axial, 50g lateral (both applied

simultaneously) shock loading to simulate impact deployment of an RTG.

4. Viewgraph 4

Viewgraph 4 shows the typical performance for the subsea RTG design shown

on Viewgraph 2. The BOL in-water power output is approximately 5W with a system

efficiency approaching 7%. Note that the hot junction temperature of the
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terrestrial RTG is limited by the 3-1ayer capsule technology which has a

long-term operating limit of approximately llO0°F. For a space application the

hot junction would probably be increased to the 950°F range to take advantage of

the high temperature heat source.

5. Viewgraphs 5, 6 & 7

Viewgraphs 5, 6 and 7 depict an alternate module configuration developed on

the Special Applications program called a "Close-Packed-Array" or CPA. These

viewgraphs show the configuration and performance of a 30-couple module rated at

approximately 1.2W power output at 2.4V load voltage.

6. View_raphs 8, 9 and I0

Viewgraphs 8, 9 and i0 depict a module with a construction similar to that

of the 30-couple module previously shown rated at 4.2W power output at

approximately 6V load voltage.

7. Viewgraphs ii, 12 and 13

Viewgraphs ii, 12 and 13 show a 5W level module at approximately 9V load

voltage. The module has 126 couples.

8. View_raph 14

viewgraph 14 shows the conceptual design for a 10-15 W (at 9-12V) space RTG

generated for a potential DOD space application using minicouples in conjunction

with a 250W thermal GPHS heat source module. This concept uses the conventional

SNAP-19 spring/piston cold end hardware arrangement to individually spring-load
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each leg of the thermoelectric couple. This arrangement is an alternate to that

shown in Viewgraph 2 where the thermoelectric module is loaded as a unit with

preload springs.

In summary, the Special Applications thermoelectric module technology is

flexible both in its configuration and power level, permitting its ahaptation to

both space and terrestrial RTG missions requiring low-power RTGs. The RTG

configuration and internal component support structure design would depend on

the specific mission requirements.
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TWO-WATTSPECIALAPPLICATIONSTERRESTRIALRTG
(BeCu Housing Design For 10,000 Psi External Pressure)

5.000 in, !

I--

10.300 in.

Viewgraph 2

( 80L POWER OUTPUT = 50 W(e)

I THERMAL INVENTORY = 72 W(t)

I APPROXIMATE WEIGHT = 30 LBS
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SPECIALAPPLICATIONSMODULE
(HOTSIDEVIEW)

Viewgraph 3
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])_!-WATTSPECIALAPPLICATIONSRIG PERFORMANCEPREDICTIONSUMMARY

WORST-CASE

IN-AIR IN-WATER IN-WATER

(BOL) (BOL) (10 YRS.)

POWER OUTPUT (W(E))

FUEL INVENTORY (W(T))

3.95 4.92

70.8 70.8

3.37 (2.6 @ .99 TO
0.999 REL.)

65.4

T/E EFFICIENCY (%)

THERMAL EFFICIENCY (%)

SYSTEM EFFICIENCY (%)

7.74 9.36 6.89

73.2 75.1 74.8

5.58 6.94 5.15

HOT JUNCTION TEMPERATURE (OF) 814

COLD JUNCTION TEMPERATURE (OF) 214

_._BIENT TEMPERATURE (OF) 113

676 641

50 50

40 40

(I) T/E ELEMENT DIMENSIONS: 0.450 IN. LG. X 0.103 IN. SQ.

(2) NUMBER T/E COUPLES: 68

(3) RTG FILL GAS: ]00% XENON

Viewgraph 4
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30-COUPLE (.067" SQ. ELEMENTS)
DEVELOPMENT MODULE QUADRANT

(COLD SIDE VIEW)

Viewgraph 5
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30-COUPLE (.q)6;" SQ. ELEMENTS)
DEVELOPMENT MODULE QUADRANT

(PARTIALLY "STUFFED" WITH COUPLES)

m
+

Viewgraph 6
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SPECIAL APPLICATIONS PROGRAM

30-COUPLEMODULE PERFORMANCE

(ELEMENT SIZE = .067" SQ. X .483" LG.)

PREDICTION

QUADRANT #3

(11/U/84)

POWER OUTPUT (WATTS(e))

POWER INPUT (WATTS(t))

HOT JUNCTION (°F)

COLD JUNCTION (°F)

OPEN CIRCUIT VOLTAGE (VDC)

LOAD VOLTAGE (VDC)

INTERNAL RESISTANCE (_'_)

EXTRANEOUS RESISTANCE (%)

THERMOELECTRIC EFFICIENCY (%)

L27 1.28

16.3 (I) 15.8 (2)

925 925 (3)

160 160

4. 80 4. 79

2.4O 2.41

4.55 (4) 4.48

0 -L5

9.3

(I) INCLUDES: QT/E (14.1W) +QsEPARATORS (2.2 W)

(2) MEASURED POWER INPUT LESS TEST FIXTURE TARE LOSSES.

(3) INFERRED TEMPERATURE BASED ON POWER INPUT AND OPEN CIRCUIT

VOLT A GE.

(4) INCLUDES RT/E (4.38 i'_) + RSTRAPS (.07 _'_) + R LEADS ("10_'_).

Viewgraph 7
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SPECIAL APPLICATIONS PROGRAM
76-COUPLE MODULE PERFORMANCE

(ELEMENT SIZE = .077" SO. X .483" LG.)

POWER OUTPUT (W(e))

POWER n_UT (W(t))

HOT JUNC TION ("F)

COLD JUNCTION ('F)

OPEN CIRCUIT VOLTAGE 07)

LOAD VOLTAGE 07)

INTERNAL RESISTANCE (fl)

EXTRANEOUS RESISTANCE (_)

THERMOELECTRIC EFFICIENCY (_)

MODULE S/N 6

PREDICTION (11/3/84) _

4.25 4.26

56.1 (1) 56.2 (2)

925 925 (3)

160 160

12, 16 12. 14

6.10 6. 10

8.69 (4) 8.65

0 -0. 5

9.3

(1) INCLUDES: QT/E (47.3 W) + QSEPARATORS (8.8 W).

(2) MEASURED POWER INPUT LESS TEST FIXTURE TARE LOSSES.

(3) INFERBEDTEMPERATURE _SED ON POWER INPUT AND OPEN
CIRCUIT VOLTAGE.

(4) INCLUDES: RT/E (8.41 t_ ) + RSTRAPS (.18n )+ RLEAD 6 (.I0 ft ).

Viewgraph 10
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FIVE-WATT DEVELOPMENT

THERMOELECTRIC MODULE

SCALE
]

|

COLD SIDE OFCOMPLETEDMODULE

SCALE
I I ..... I

HOT SIDE OF COMPLETED MODULE

Viewgraph 11
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SPECIAL APPLICATIONS PROGRAM

126-COUPLE MODULE PERFORMANCE

(ELEMENT SIZE = .061" X .466" LG.)

POWER OUTPUT (WATTS(e))

POWER INPUT (WATTS(t))

HOT JUNCTION ('F)

COLD JUNCTION (°F)

OPEN CIRCUIT VOLTAGE (VDC)

LOAD VOLTAGE (VDC)

INTERNAL RESISTANCE (f_)

EXTRANEOUS RESISTANCE (%)

THERMOELECTRIC EFFICIENCY (%)

MODULE S/N 5

PREDICTION (10/12/84)

4. 51 4. 47

59. 7 (1) 60. 0 (2)

925 925 (3)

160 160

19. 27 19. 30

9. 63 9. 72

20. 56 (4) 20. 83

0 1.3

9.2

(1) INCLUDES: QT/E (49.4 W) + QSEPARATORS (8.2 W) +

QINERT COUPLES(5) (2.1 W).

(2) MEASURED POWER INPUT LESS TEST FIXTURE TARE LOSSES.

(3) INFERRED TEMPERATURE BASED ON POWER INPUT AND OPEN

CIRCUIT VOLTAGE.

(4) INCLUDES RT/E (20.40 _ ) + RSTRAPS (.06 _ ) + RLEAD S (.I0 t_ ).

Viewgraph 13
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Session C, Submittal No.

Alfred Schock

FairchildSpace Company
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RADIOISOTOPE HEAT SOURCE

\

X /
\

/

/

/

/

/

/

/

x _

/

I

/ /

/ /

_Fuel Pellet (PuO2)

_Clad (lr)

1Impact Shell

(FWPF*)

jlnsulator (CBCF**)

jAeroshell (FWPF*)

*Fine-Wea_e Pierced Fabric)
**Carbon.Bonded Carbon Fibers
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A

HEAT SOURCE CROSS-SECTIONS

.156

.156--_

1.677

2.159 I
I

1.080

/
/
/
/

-j
/
/!
/
/
/

/

_L___

I

t_1.550

.167 --

.025

01.173

.070

.070
- l_1.715 _,

_- _12.032 - _ Impact Shell

Thermal _ i ¢1.083_ / / FWPF (1.95)

Insulation __

CBCF 10.2) \\

_/ FWPF 11.95)

SECTION A- A

Mass-- 1.346 LB = 0.611 kg
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MULTICOUPLE AND FASTENERS

_-,_---Heat Collector

(Graphite)

Thermoelectric Legs
(SiGelGaP)

Compliance Pad
(Graphite)

Mounting Stud (W)

Ferrule (AI)

Washer (Ti)

Belleville Spring (Fe)

Washer (Ti)

Nut (Ti)
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RADIOISOTOPE THERMOELECTRIC GENERATOR (RTG)

Helium Vent

/

_Heat Source.

_'__.._Helium Canister (Mo)

___.---Thermal Insulation

(Mo Multifoil)
_//___.....-.._ Heat Source Support

_1/_ (Pyrolytic Graphite)

Multicouple
RTG Housing (AI)

eners
.I Bimetallic Joint

Terminal Feedthrough
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RTG CROSS-SECTIONS

_3.030

/

/
/
/
H

/

/
/
/
/
/
/
/
/
/
A
/
A
A
A
A
/
/
/
A

--A
Y

5.000

Mass.2.568 LB.
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RTG IN PENETRATOR

rl

II

RTG

Crush.Up
Impact Absorber

Penetrator Wall
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RTG IN PENETRATOR CROSS-SECTIONS
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Mass.2.568 LB.
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J

B

J
SECTION A-A

SECTION B.B
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PENETRATOR DECELERATION, PAGE 1
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PENETRATOR DECELERATION, PAGE 2
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PENETRATOR DECELERATION, PAGE 3

t=8ms i

- z, = 0.73 m, - z, = 65.4 m ..,_ I_
_; I t_-zl = 75.6 m/s, -_ = 23.8 mls _ _.-_,l:l_t

•. .. L ;;, ,,_, AFTBODY
zl = 5400 m/s 2, z2 13400 mls 2 i.-_P_ _a?

i

_._--21 _ DREBODY
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PENETRATOR DECELERATION, PAGE 4

t = 12ms
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PENETRATOR DECELERATION, PAGE 5

t = 16ms z
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DECELERATION OF AFT BODY,
VELOCITY VERSUS TIME AFTER IMPACT
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DECELERATION OF FOREBODY,
VELOCITY VERSUS TIME AFTER IMPACT
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DECELERATION OF FOREBODY,
VELOCITY VERSUS PENETRATION
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